These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35961064)

  • 21. The use of electromagnetic tracking technology for measurement of passive cervical range of motion: a pilot study.
    Morphett AL; Crawford CM; Lee D
    J Manipulative Physiol Ther; 2003; 26(3):152-9. PubMed ID: 12704307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Normal kinematics of the upper cervical spine during the Flexion-Rotation Test - In vivo measurements using magnetic resonance imaging.
    Takasaki H; Hall T; Oshiro S; Kaneko S; Ikemoto Y; Jull G
    Man Ther; 2011 Apr; 16(2):167-71. PubMed ID: 21055995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cervical flexion and extension includes anti-directional cervical joint motion in healthy adults.
    Wang X; Lindstroem R; Plocharski M; Østergaaard LR; Graven-Nielsen T
    Spine J; 2018 Jan; 18(1):147-154. PubMed ID: 28735768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validity and intra-rater reliability of an android phone application to measure cervical range-of-motion.
    Quek J; Brauer SG; Treleaven J; Pua YH; Mentiplay B; Clark RA
    J Neuroeng Rehabil; 2014 Apr; 11():65. PubMed ID: 24742001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo three-dimensional kinematics of the cervical spine during maximal active head rotation.
    Kang J; Chen G; Zhai X; He X
    PLoS One; 2019; 14(4):e0215357. PubMed ID: 30990826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation.
    Salem W; Lenders C; Mathieu J; Hermanus N; Klein P
    Man Ther; 2013 Aug; 18(4):339-44. PubMed ID: 23375147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reproducibility of cervical range of motion in patients with neck pain.
    Hoving JL; Pool JJ; van Mameren H; Devillé WJ; Assendelft WJ; de Vet HC; de Winter AF; Koes BW; Bouter LM
    BMC Musculoskelet Disord; 2005 Dec; 6():59. PubMed ID: 16351719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does altered mandibular position and dental occlusion influence upper cervical movement: A cross-sectional study in asymptomatic people.
    Grondin F; Hall T; von Piekartz H
    Musculoskelet Sci Pract; 2017 Feb; 27():85-90. PubMed ID: 27847242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional motion analysis of the upper cervical spine during axial rotation.
    Iai H; Moriya H; Goto S; Takahashi K; Yamagata M; Tamaki T
    Spine (Phila Pa 1976); 1993 Dec; 18(16):2388-92. PubMed ID: 8303438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of the Cervical Spine Device for the Assessment of Cervical Spine Range of Motion in Asymptomatic Participants.
    Mangone M; Bernetti A; Germanotta M; Di Sipio E; Razzano C; Ioppolo F; Santilli V; Venditto T; Paoloni M
    J Manipulative Physiol Ther; 2018 May; 41(4):342-349. PubMed ID: 29751851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematics of the upper cervical spine during high velocity-low amplitude manipulation. Analysis of intra- and inter-operator reliability for pre-manipulation positioning and impulse displacements.
    Dugailly PM; Beyer B; Sobczak S; Salvia P; Rooze M; Feipel V
    J Electromyogr Kinesiol; 2014 Oct; 24(5):621-7. PubMed ID: 24925003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel virtual reality application for autonomous assessment of cervical range of motion: development and reliability study.
    Santos-Paz JA; Sánchez-Picot Á; Rojo A; Martín-Pintado-Zugasti A; Otero A; Garcia-Carmona R
    PeerJ; 2022; 10():e14031. PubMed ID: 36124134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel use of inertial sensors to measure the craniocervical flexion range of motion associated to the craniocervical flexion test: an observational study.
    Pérez-Fernández T; Armijo-Olivo S; Liébana S; de la Torre Ortíz PJ; Fernández-Carnero J; Raya R; Martín-Pintado-Zugasti A
    J Neuroeng Rehabil; 2020 Nov; 17(1):152. PubMed ID: 33213452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical evaluation of segmental occipitoatlantoaxial stabilization techniques.
    Nassos JT; Ghanayem AJ; Sasso RC; Tzermiadianos MN; Voronov LI; Havey RM; Rinella AS; Carandang G; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Dec; 34(25):2740-4. PubMed ID: 19940731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intervertebral range of motion characteristics of normal cervical spinal segments (C0-T1) during in vivo neck motions.
    Zhou C; Wang H; Wang C; Tsai TY; Yu Y; Ostergaard P; Li G; Cha T
    J Biomech; 2020 Jan; 98():109418. PubMed ID: 31653508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of occipital-atlas stabilization in the upper cervical spine kinematics: an in vitro study.
    Hidalgo-García C; Lorente AI; López-de-Celis C; Lucha-López O; Malo-Urriés M; Rodríguez-Sanz J; Maza-Frechín M; Tricás-Moreno JM; Krauss J; Pérez-Bellmunt A
    Sci Rep; 2021 May; 11(1):10853. PubMed ID: 34035331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.
    Mousavi SJ; Tromp R; Swann MC; White AP; Anderson DE
    J Biomech; 2018 Oct; 79():248-252. PubMed ID: 30213648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reproducibility of the kinematics in rotational high-velocity, low-amplitude thrust of the upper cervical spine: a cadaveric study.
    Gianola S; Cattrysse E; Provyn S; Van Roy P
    J Manipulative Physiol Ther; 2015 Jan; 38(1):51-58. PubMed ID: 25467611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical comparison of occiput-C1-C2 fixation techniques: C0-C1 transarticular screw and direct occiput condyle screw.
    Takigawa T; Simon P; Espinoza Orías AA; Hong JT; Ito Y; Inoue N; An HS
    Spine (Phila Pa 1976); 2012 May; 37(12):E696-701. PubMed ID: 22158063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach.
    Pain LAM; Baker R; Sohail QZ; Richardson D; Zabjek K; Mogk JPM; Agur AMR
    Disabil Rehabil; 2019 Jul; 41(15):1826-1834. PubMed ID: 29566570
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.