These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35961143)

  • 1. Environmental impact assessment of post-combustion CO
    Galusnyak SC; Petrescu L; Cormos CC
    J Environ Manage; 2022 Oct; 320():115908. PubMed ID: 35961143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.
    Morales Mora MA; Vergara CP; Leiva MA; Martínez Delgadillo SA; Rosa-Domínguez ER
    J Environ Manage; 2016 Dec; 183(Pt 3):998-1008. PubMed ID: 27692511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology.
    Bhui B; Vairakannu P
    J Environ Manage; 2019 Feb; 231():1241-1256. PubMed ID: 30602249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental Performances of Various CCU Options in the Framework of an Integrated Chemical Plant.
    Mirgaux O; Anselmi H; Patisson F
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation.
    Varling AS; Christensen TH; Bisinella V
    Waste Manag; 2023 Feb; 157():168-179. PubMed ID: 36549176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach.
    Khan MMH; Havukainen J; Horttanainen M
    Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The environmental and economic sustainability of carbon capture and storage.
    Hardisty PE; Sivapalan M; Brooks P
    Int J Environ Res Public Health; 2011 May; 8(5):1460-77. PubMed ID: 21655130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.
    Hills T; Leeson D; Florin N; Fennell P
    Environ Sci Technol; 2016 Jan; 50(1):368-77. PubMed ID: 26630247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and energetic analysis of coupling a biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO
    Esquivel-Patiño GG; Nápoles-Rivera F
    J Environ Manage; 2021 Dec; 300():113746. PubMed ID: 34562822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration.
    Bisinella V; Hulgaard T; Riber C; Damgaard A; Christensen TH
    Waste Manag; 2021 Jun; 128():99-113. PubMed ID: 33975140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of multimode gas-fired combined-cycle chemical-looping combustion-based power plant layouts.
    Jayadevappa BR
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):54967-54987. PubMed ID: 35307797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxycoal process with cryogenic oxygen supply.
    Kather A; Scheffknecht G
    Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Anwar MN; Fayyaz A; Sohail NF; Khokhar MF; Baqar M; Khan WD; Rasool K; Rehan M; Nizami AS
    J Environ Manage; 2018 Nov; 226():131-144. PubMed ID: 30114572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bringing value to the chemical industry from capture, storage and use of CO
    Aldaco R; Butnar I; Margallo M; Laso J; Rumayor M; Dominguez-Ramos A; Irabien A; Dodds PE
    Sci Total Environ; 2019 May; 663():738-753. PubMed ID: 30738256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep CCS: Moving Beyond 90% Carbon Dioxide Capture.
    Dods MN; Kim EJ; Long JR; Weston SC
    Environ Sci Technol; 2021 Jul; 55(13):8524-8534. PubMed ID: 34157836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative Gas-Liquid Membrane Contactor Systems for Carbon Capture and Mineralization in Energy Intensive Industries.
    Asimakopoulou A; Koutsonikolas D; Kastrinaki G; Skevis G
    Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33917973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employment impact assessment of carbon capture and storage (CCS) in China's power sector based on input-output model.
    Jiang Y; Lei Y; Yan X; Yang Y
    Environ Sci Pollut Res Int; 2019 May; 26(15):15665-15676. PubMed ID: 30949943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.