BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35961187)

  • 1. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration.
    Wang Y; Ling C; Chen J; Liu H; Mo Q; Zhang W; Yao Q
    Biomater Adv; 2022 Sep; 140():213067. PubMed ID: 35961187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration.
    Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y
    Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and
    Zhang W; Ling C; Zhang A; Liu H; Jiang Y; Li X; Sheng R; Yao Q; Chen J
    Bioact Mater; 2020 Dec; 5(4):832-843. PubMed ID: 32637747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration.
    Zhu Y; Kong L; Farhadi F; Xia W; Chang J; He Y; Li H
    Biomaterials; 2019 Feb; 192():149-158. PubMed ID: 30448699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration.
    Zhang P; Chen J; Sun Y; Cao Z; Zhang Y; Mo Q; Yao Q; Zhang W
    J Mater Chem B; 2023 Feb; 11(6):1240-1261. PubMed ID: 36648128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.
    Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R
    Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cell-Free Silk Fibroin Biomaterial Strategy Promotes In Situ Cartilage Regeneration Via Programmed Releases of Bioactive Molecules.
    Mao Z; Bi X; Wu C; Zheng Y; Shu X; Wu S; Guan J; Ritchie RO
    Adv Healthc Mater; 2023 Jan; 12(1):e2201588. PubMed ID: 36314425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair.
    Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H
    Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect.
    Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair.
    Shang L; Ma B; Wang F; Li J; Shen S; Li X; Liu H; Ge S
    Cell Prolif; 2020 Nov; 53(11):e12917. PubMed ID: 33001510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone.
    Sheng R; Chen J; Wang H; Luo Y; Liu J; Chen Z; Mo Q; Chi J; Ling C; Tan X; Yao Q; Zhang W
    Adv Healthc Mater; 2022 Sep; 11(17):e2200602. PubMed ID: 35749970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering.
    Zhang W; Zhang Y; Zhang A; Ling C; Sheng R; Li X; Yao Q; Chen J
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112215. PubMed ID: 34225867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues.
    Natarajan ABM; Sivadas VPD; Nair PDPD
    Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34265754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration.
    Wu J; Cao L; Liu Y; Zheng A; Jiao D; Zeng D; Wang X; Kaplan DL; Jiang X
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8878-8895. PubMed ID: 30777748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo.
    Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.