These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35961273)

  • 41. African Swine Fever Virus K205R Induces ER Stress and Consequently Activates Autophagy and the NF-κB Signaling Pathway.
    Wang Q; Zhou L; Wang J; Su D; Li D; Du Y; Yang G; Zhang G; Chu B
    Viruses; 2022 Feb; 14(2):. PubMed ID: 35215987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stability of African swine fever virus on heat-treated field crops.
    Fischer M; Mohnke M; Probst C; Pikalo J; Conraths FJ; Beer M; Blome S
    Transbound Emerg Dis; 2020 Nov; 67(6):2318-2323. PubMed ID: 32460443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. African Swine Fever Virus CD2v Protein Induces β-Interferon Expression and Apoptosis in Swine Peripheral Blood Mononuclear Cells.
    Chaulagain S; Delhon GA; Khatiwada S; Rock DL
    Viruses; 2021 Jul; 13(8):. PubMed ID: 34452346
    [TBL] [Abstract][Full Text] [Related]  

  • 44. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis.
    Vallée I; Tait SW; Powell PP
    J Virol; 2001 Nov; 75(21):10372-82. PubMed ID: 11581405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. African Swine Fever Virus Exhibits Distinct Replication Defects in Different Cell Types.
    Gao Y; Xia T; Bai J; Zhang L; Jiang X; Yang X; Zhang K; Jiang P
    Viruses; 2022 Nov; 14(12):. PubMed ID: 36560646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation.
    Li L; Fu J; Li J; Guo S; Chen Q; Zhang Y; Liu Z; Tan C; Chen H; Wang X
    J Virol; 2022 Sep; 96(17):e0094422. PubMed ID: 35972295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Punicalagin Inhibits African Swine Fever Virus Replication by Targeting Early Viral Stages and Modulating Inflammatory Pathways.
    Geng R; Yin D; Liu Y; Lv H; Zhou X; Bao C; Gong L; Shao H; Qian K; Chen H; Qin A
    Vet Sci; 2024 Sep; 11(9):. PubMed ID: 39330819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The A137R Protein of African Swine Fever Virus Inhibits Type I Interferon Production via the Autophagy-Mediated Lysosomal Degradation of TBK1.
    Sun M; Yu S; Ge H; Wang T; Li Y; Zhou P; Pan L; Han Y; Yang Y; Sun Y; Li S; Li LF; Qiu HJ
    J Virol; 2022 May; 96(9):e0195721. PubMed ID: 35412346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression: A Review.
    Wang Y; Kang W; Yang W; Zhang J; Li D; Zheng H
    Front Immunol; 2021; 12():715582. PubMed ID: 34552586
    [TBL] [Abstract][Full Text] [Related]  

  • 50. African swine fever virus infection activates inflammatory responses through downregulation of the anti-inflammatory molecule C1QTNF3.
    Lv C; Zhang Q; Zhao L; Yang J; Zou Z; Zhao Y; Li C; Sun X; Lin X; Jin M
    Front Immunol; 2022; 13():1002616. PubMed ID: 36311798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. African Swine Fever Virus EP364R and C129R Target Cyclic GMP-AMP To Inhibit the cGAS-STING Signaling Pathway.
    Dodantenna N; Ranathunga L; Chathuranga WAG; Weerawardhana A; Cha JW; Subasinghe A; Gamage N; Haluwana DK; Kim Y; Jheong W; Poo H; Lee JS
    J Virol; 2022 Aug; 96(15):e0102222. PubMed ID: 35861515
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An immortalized porcine macrophage cell line competent for the isolation of African swine fever virus.
    Masujin K; Kitamura T; Kameyama K-; Okadera K; Nishi T; Takenouchi T; Kitani H; Kokuho T
    Sci Rep; 2021 Feb; 11(1):4759. PubMed ID: 33637799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ASFV transcription reporter screening system identifies ailanthone as a broad antiviral compound.
    Zhang Y; Zhang Z; Zhang F; Zhang J; Jiao J; Hou M; Qian N; Zhao D; Zheng X; Tan X
    Virol Sin; 2023 Jun; 38(3):459-469. PubMed ID: 36948461
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GS-441524 inhibits African swine fever virus infection in vitro.
    Huang Z; Gong L; Zheng Z; Gao Q; Chen X; Chen Y; Chen X; Xu R; Zheng J; Xu Z; Zhang S; Wang H; Zhang G
    Antiviral Res; 2021 Jul; 191():105081. PubMed ID: 33945807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PI3K-Akt pathway-independent PIK3AP1 identified as a replication inhibitor of the African swine fever virus based on iTRAQ proteomic analysis.
    Yang B; Hao Y; Yang J; Zhang D; Shi X; Yang X; Zhao D; Yan W; Chen L; Chen G; Bie X; Liu X; Zheng H; Zhang K
    Virus Res; 2023 Apr; 327():199052. PubMed ID: 36775023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deletion of the A137R Gene from the Pandemic Strain of African Swine Fever Virus Attenuates the Strain and Offers Protection against the Virulent Pandemic Virus.
    Gladue DP; Ramirez-Medina E; Vuono E; Silva E; Rai A; Pruitt S; Espinoza N; Velazquez-Salinas L; Borca MV
    J Virol; 2021 Oct; 95(21):e0113921. PubMed ID: 34406865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactome between ASFV and host immune pathway proteins.
    Wu Q; Lei Y; Zuo Y; Zhang J; Guo F; Xu W; Xie T; Wang D; Peng G; Wang X; Chen H; Fu Z; Cao G; Dai J
    mSystems; 2023 Dec; 8(6):e0047123. PubMed ID: 37966252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The 24.5-kb Left Variable Region Is Not a Determinant for African Swine Fever Virus to Replicate in Primary Porcine Alveolar Macrophages.
    Luo R; Wang T; Sun M; Pan L; Huang S; Sun Y; Qiu HJ
    Viruses; 2022 Sep; 14(10):. PubMed ID: 36298673
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of several African swine fever virus replication inhibitors by screening of a library of FDA-approved drugs.
    Li T; Zheng J; Huang T; Wang X; Li J; Jin F; Wei W; Chen X; Liu C; Bao M; Zhao G; Huang L; Zhao D; Chen J; Bu Z; Weng C
    Virology; 2024 May; 593():110014. PubMed ID: 38401340
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1β-induced fibroblast-like synoviocytes through regulating the activation of NF-κB and JAK/STAT-signaling pathways.
    Lou L; Liu Y; Zhou J; Wei Y; Deng J; Dong B; Chai L
    Immunopharmacol Immunotoxicol; 2015; 37(6):499-507. PubMed ID: 26471424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.