These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35961453)

  • 21. Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna.
    Varsou DD; Ellis LA; Afantitis A; Melagraki G; Lynch I
    Chemosphere; 2021 Dec; 285():131452. PubMed ID: 34265725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building species trait-specific nano-QSARs: Model stacking, navigating model uncertainties and limitations, and the effect of dataset size.
    Balraadjsing S; J G M Peijnenburg W; Vijver MG
    Environ Int; 2024 Jun; 188():108764. PubMed ID: 38788418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicity prediction of nanoparticles using machine learning approaches.
    Ahmadi M; Ayyoubzadeh SM; Ghorbani-Bidkorpeh F
    Toxicology; 2024 Jan; 501():153697. PubMed ID: 38056590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico prediction of acute chemical toxicity of biocides in marine crustaceans using machine learning.
    Krishnan R; Howard IS; Comber S; Jha AN
    Sci Total Environ; 2023 Aug; 887():164072. PubMed ID: 37268134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning-enabled nanosafety assessment of multi-metallic alloy nanoparticles modified TiO
    Regonia PR; Olorocisimo JP; De Los Reyes F; Ikeda K; Pelicano CM
    NanoImpact; 2022 Oct; 28():100442. PubMed ID: 36436823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory.
    Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M
    Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals.
    Zhou L; Fan D; Yin W; Gu W; Wang Z; Liu J; Xu Y; Shi L; Liu M; Ji G
    BMC Bioinformatics; 2021 Mar; 22(1):151. PubMed ID: 33761866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna.
    Önlü S; Saçan MT
    J Hazard Mater; 2018 Jun; 351():20-28. PubMed ID: 29506002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index.
    Furxhi I; Murphy F; Mullins M; Poland CA
    Toxicol Lett; 2019 Sep; 312():157-166. PubMed ID: 31102714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna.
    He L; Xiao K; Zhou C; Li G; Yang H; Li Z; Cheng J
    Ecotoxicol Environ Saf; 2019 May; 173():285-292. PubMed ID: 30776561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis.
    Li W; Huang Y; Zhuang BW; Liu GJ; Hu HT; Li X; Liang JY; Wang Z; Huang XW; Zhang CQ; Ruan SM; Xie XY; Kuang M; Lu MD; Chen LD; Wang W
    Eur Radiol; 2019 Mar; 29(3):1496-1506. PubMed ID: 30178143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the structural factors of organic compounds on the acute toxicity toward
    Tinkov OV; Grigorev VY; Razdolsky AN; Grigoryeva LD; Dearden JC
    SAR QSAR Environ Res; 2020 Aug; 31(8):615-641. PubMed ID: 32713201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of protein corona on nanomaterials by machine learning using novel descriptors.
    Duan Y; Coreas R; Liu Y; Bitounis D; Zhang Z; Parviz D; Strano M; Demokritou P; Zhong W
    NanoImpact; 2020 Jan; 17():. PubMed ID: 32104746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.
    Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS
    Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna.
    Niculescu SP; Lewis MA; Tigner J
    SAR QSAR Environ Res; 2008; 19(7-8):735-50. PubMed ID: 19061086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning Models for Identification and Prediction of Toxic Organic Compounds Using
    Choi TJ; An HE; Kim CB
    Life (Basel); 2022 Sep; 12(9):. PubMed ID: 36143479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anticipating food structure of meat products from mastication physics applying machine learning.
    Oppen D; Attig T; Weiss J; Krupitzer C
    Food Res Int; 2023 Dec; 174(Pt 1):113576. PubMed ID: 37986524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.