BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35961544)

  • 1. A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications.
    John J A; Samuel MS; Govarthanan M; Selvarajan E
    Environ Res; 2022 Nov; 214(Pt 3):114018. PubMed ID: 35961544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomics of aerobic cellulose utilization systems in actinobacteria.
    Anderson I; Abt B; Lykidis A; Klenk HP; Kyrpides N; Ivanova N
    PLoS One; 2012; 7(6):e39331. PubMed ID: 22723998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review.
    Rajnish KN; Samuel MS; John J A; Datta S; Chandrasekar N; Balaji R; Jose S; Selvarajan E
    Int J Biol Macromol; 2021 Jul; 182():1793-1802. PubMed ID: 34058212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Supplementary Enzyme Cocktail from Actinobacteria and Plant Biomass Induction.
    Takenaka M; Lee JM; Kahar P; Ogino C; Kondo A
    Biotechnol J; 2019 Mar; 14(3):e1700744. PubMed ID: 29981210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application.
    Singhania RR; Patel AK; Pandey A; Ganansounou E
    Bioresour Technol; 2017 Dec; 245(Pt B):1352-1361. PubMed ID: 28596076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.
    Gao D; Luan Y; Wang Q; Liang Q; Qi Q
    Microb Cell Fact; 2015 Oct; 14():159. PubMed ID: 26452465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Enzymes from Marine Actinobacteria.
    Zhao XQ; Xu XN; Chen LY
    Adv Food Nutr Res; 2016; 78():137-51. PubMed ID: 27452169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures.
    Heiss-Blanquet S; Fayolle-Guichard F; Lombard V; Hébert A; Coutinho PM; Groppi A; Barre A; Henrissat B
    PLoS One; 2016; 11(12):e0167216. PubMed ID: 27936240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.
    Kern M; McGeehan JE; Streeter SD; Martin RN; Besser K; Elias L; Eborall W; Malyon GP; Payne CM; Himmel ME; Schnorr K; Beckham GT; Cragg SM; Bruce NC; McQueen-Mason SJ
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10189-94. PubMed ID: 23733951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview on marine cellulolytic enzymes and their potential applications.
    Barzkar N; Sohail M
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6873-6892. PubMed ID: 32556412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel buffalo rumen metagenome derived acidic cellulase Cel-3.1 cloning, characterization, and its application in saccharifying rice straw and corncob biomass.
    Pabbathi NPP; Velidandi A; Gandam PK; Koringa P; Parcha SR; Baadhe RR
    Int J Biol Macromol; 2021 Feb; 170():239-250. PubMed ID: 33316338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass.
    Kshirsagar SD; Saratale GD; Saratale RG; Govindwar SP; Oh MK
    J Appl Microbiol; 2016 Jan; 120(1):112-25. PubMed ID: 26507788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.
    Maki M; Leung KT; Qin W
    Int J Biol Sci; 2009 Jul; 5(5):500-16. PubMed ID: 19680472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass.
    Dadheech T; Shah R; Pandit R; Hinsu A; Chauhan PS; Jakhesara S; Kunjadiya A; Rank D; Joshi C
    Int J Biol Macromol; 2018 Jul; 113():73-81. PubMed ID: 29454942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity.
    Cunha ES; Hatem CL; Barrick D
    Proteins; 2016 Aug; 84(8):1043-54. PubMed ID: 27071357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant genetic engineering to improve biomass characteristics for biofuels.
    Sticklen M
    Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of thermo/halo stable cellulase produced from halophilic Virgibacillus salarius BM-02 using non-pretreated biomass.
    Yousef NMH; Mawad AMM
    World J Microbiol Biotechnol; 2022 Nov; 39(1):22. PubMed ID: 36422734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable cellulases: Current status and perspectives.
    Patel AK; Singhania RR; Sim SJ; Pandey A
    Bioresour Technol; 2019 May; 279():385-392. PubMed ID: 30685132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.