These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35961568)

  • 1. Behavior and fate of microcystin-LR in soils amended with biochar and peat.
    Cao Q; You B; Yao L; Liu W; Cheng C; Zhu B; Xie L
    Environ Pollut; 2022 Oct; 310():119913. PubMed ID: 35961568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using soil amendments to reduce microcystin-LR bioaccumulation in lettuce.
    Cao Q; You B; Liu W; Xie L; Jiang W; Cheng C
    Environ Pollut; 2022 Jan; 292(Pt A):118354. PubMed ID: 34648839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting microcystin-LR sorption and desorption capability of different farmland soils amended with biochar: Effects of biochar dose and aging time.
    Yuan Y; Li J; Wang C; An G
    Environ Pollut; 2021 Oct; 286():117364. PubMed ID: 34052651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection.
    Chen W; Song L; Gan N; Li L
    Environ Pollut; 2006 Dec; 144(3):752-8. PubMed ID: 16632129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variant-Specific Adsorption, Desorption, and Dissipation of Microcystin Toxins in Surface Soil.
    Liu BL; Li YW; Tu XY; Yu PF; Xiang L; Zhao HM; Feng NX; Li H; Cai QY; Mo CH; Wong MH
    J Agric Food Chem; 2021 Oct; 69(40):11825-11834. PubMed ID: 34582220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study.
    Xiang L; Li YW; Wang ZR; Liu BL; Zhao HM; Li H; Cai QY; Mo CH; Li QX
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: A field study from Lake Taihu region of China.
    Cao Q; Steinman AD; Wan X; Xie L
    Environ Pollut; 2018 Sep; 240():44-50. PubMed ID: 29729568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High ecological and human health risks from microcystins in vegetable fields in southern China.
    Xiang L; Li YW; Liu BL; Zhao HM; Li H; Cai QY; Mo CH; Wong MH; Li QX
    Environ Int; 2019 Dec; 133(Pt A):105142. PubMed ID: 31513927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Impact of biochar amendment on the sorption and dissipation of chlorantraniliprole in soils].
    Wang TT; Yu XY; Shen Y; Zhang CL; Liu XJ
    Huan Jing Ke Xue; 2012 Apr; 33(4):1339-45. PubMed ID: 22720587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrazine leaching from biochar-amended soils.
    Delwiche KB; Lehmann J; Walter MT
    Chemosphere; 2014 Jan; 95():346-52. PubMed ID: 24129000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of light, microorganisms, farming chemicals and water content on the degradation of microcystin-LR in agricultural soils.
    Cao Q; Steinman AD; Yao L; Xie L
    Ecotoxicol Environ Saf; 2018 Jul; 156():141-147. PubMed ID: 29549737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of varying pH and co-existing microcystin-LR on time- and concentration-dependent cadmium sorption by goethite-modified biochar derived from distillers' grains.
    Zhao Y; Li J
    Environ Pollut; 2022 Aug; 307():119490. PubMed ID: 35595000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR ((14)C-MC-LR).
    Corbel S; Mougin C; Nélieu S; Delarue G; Bouaïcha N
    Sci Total Environ; 2016 Jan; 541():1052-1058. PubMed ID: 26473707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome.
    Petrou M; Karas PA; Vasileiadis S; Zafiriadis I; Papadimitriou T; Levizou E; Kormas K; Karpouzas DG
    Environ Pollut; 2020 Nov; 266(Pt 1):115208. PubMed ID: 32683235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar.
    Park JH; Lee SJ; Lee ME; Chung JW
    Environ Sci Process Impacts; 2016 Apr; 18(4):514-20. PubMed ID: 27055368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils.
    Yu XY; Mu CL; Gu C; Liu C; Liu XJ
    Chemosphere; 2011 Nov; 85(8):1284-9. PubMed ID: 21862101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil.
    Khorram MS; Wang Y; Jin X; Fang H; Yu Y
    Environ Toxicol Chem; 2015 Jun; 34(6):1258-66. PubMed ID: 25703508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of microcystin-RR onto surface soils: Characteristics and influencing factors.
    Liu BL; Li YW; Xie LS; Guo JJ; Xiang L; Mo CH
    J Hazard Mater; 2022 Jun; 431():128571. PubMed ID: 35278968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for 1,3-Dichloropropene Dissipation in Biochar-Amended Soils.
    Wang Q; Gao S; Wang D; Spokas K; Cao A; Yan D
    J Agric Food Chem; 2016 Mar; 64(12):2531-40. PubMed ID: 26954066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Effect of Fresh and Aged Biochar on the Behavior of the Herbicide Mesotrione in Soils.
    Gámiz B; Velarde P; Spokas KA; Cox L
    J Agric Food Chem; 2019 Aug; 67(34):9450-9459. PubMed ID: 31381326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.