BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3596162)

  • 1. Differential effects of Clostridium difficile toxins A and B on rabbit ileum.
    Triadafilopoulos G; Pothoulakis C; O'Brien MJ; LaMont JT
    Gastroenterology; 1987 Aug; 93(2):273-9. PubMed ID: 3596162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by
    Fettucciari K; Dini F; Marconi P; Bassotti G
    Biology (Basel); 2023 Aug; 12(8):. PubMed ID: 37627001
    [No Abstract]   [Full Text] [Related]  

  • 3. Increased intestinal permeability and downregulation of absorptive ion transporters
    Peritore-Galve FC; Kaji I; Smith A; Walker LM; Shupe JA; Washington MK; Algood HMS; Dudeja PK; Goldenring JR; Lacy DB
    Gut Microbes; 2023; 15(1):2225841. PubMed ID: 37350393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a ligate intestinal loop mouse model to investigate Clostridioides difficile adherence to the intestinal mucosa in aged mice.
    Castro-Córdova P; Mendoza-León MJ; Paredes-Sabja D
    PLoS One; 2021; 16(12):e0261081. PubMed ID: 34936648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 6. Small Molecule Inhibitor Screen Reveals Calcium Channel Signaling as a Mechanistic Mediator of
    Farrow MA; Chumber NM; Bloch SC; King M; Moton-Melancon K; Shupe J; Washington MK; Spiller BW; Lacy DB
    ACS Chem Biol; 2020 May; 15(5):1212-1221. PubMed ID: 31909964
    [No Abstract]   [Full Text] [Related]  

  • 7. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile.
    Ransom EM; Kaus GM; Tran PM; Ellermeier CD; Weiss DS
    Mol Microbiol; 2018 Nov; 110(4):533-549. PubMed ID: 30125399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine Protease-Mediated Autocleavage of
    Zhang Y; Li S; Yang Z; Shi L; Yu H; Salerno-Goncalves R; Saint Fleur A; Feng H
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):611-625. PubMed ID: 29930981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model.
    Zhang Y; Yang Z; Gao S; Hamza T; Yfantis HG; Lipsky M; Feng H
    Anaerobe; 2017 Dec; 48():249-256. PubMed ID: 29031928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile infection.
    Smits WK; Lyras D; Lacy DB; Wilcox MH; Kuijper EJ
    Nat Rev Dis Primers; 2016 Apr; 2():16020. PubMed ID: 27158839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects.
    Di Bella S; Ascenzi P; Siarakas S; Petrosillo N; di Masi A
    Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27153087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.
    Chen S; Sun C; Wang H; Wang J
    Toxins (Basel); 2015 Dec; 7(12):5254-67. PubMed ID: 26633511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function.
    Leslie JL; Huang S; Opp JS; Nagy MS; Kobayashi M; Young VB; Spence JR
    Infect Immun; 2015 Jan; 83(1):138-45. PubMed ID: 25312952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection.
    Sun X; Hirota SA
    Mol Immunol; 2015 Feb; 63(2):193-202. PubMed ID: 25242213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium difficile infection: molecular pathogenesis and novel therapeutics.
    Rineh A; Kelso MJ; Vatansever F; Tegos GP; Hamblin MR
    Expert Rev Anti Infect Ther; 2014 Jan; 12(1):131-50. PubMed ID: 24410618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of toxin A and toxin B in Clostridium difficile infection: insights from the gnotobiotic piglet model.
    Steele J; Parry N; Tzipori S
    Gut Microbes; 2014; 5(1):53-7. PubMed ID: 24394234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The P2Y6 receptor mediates Clostridium difficile toxin-induced CXCL8/IL-8 production and intestinal epithelial barrier dysfunction.
    Hansen A; Alston L; Tulk SE; Schenck LP; Grassie ME; Alhassan BF; Veermalla AT; Al-Bashir S; Gendron FP; Altier C; MacDonald JA; Beck PL; Hirota SA
    PLoS One; 2013; 8(11):e81491. PubMed ID: 24278446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium difficile enteritis: A report of two cases and systematic literature review.
    Dineen SP; Bailey SH; Pham TH; Huerta S
    World J Gastrointest Surg; 2013 Mar; 5(3):37-42. PubMed ID: 23556059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease.
    Steele J; Mukherjee J; Parry N; Tzipori S
    J Infect Dis; 2013 Jan; 207(2):323-30. PubMed ID: 23125448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.
    Hirota SA; Iablokov V; Tulk SE; Schenck LP; Becker H; Nguyen J; Al Bashir S; Dingle TC; Laing A; Liu J; Li Y; Bolstad J; Mulvey GL; Armstrong GD; MacNaughton WK; Muruve DA; MacDonald JA; Beck PL
    Infect Immun; 2012 Dec; 80(12):4474-84. PubMed ID: 23045481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.