These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35961986)

  • 1. The role of natural gas in reaching net-zero emissions in the electric sector.
    Bistline JET; Young DT
    Nat Commun; 2022 Aug; 13(1):4743. PubMed ID: 35961986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of variations in renewable cost projections for electric sector decarbonization in the United States.
    Bistline JET; Bedilion R; Goteti NS; Kern N
    iScience; 2022 Jun; 25(6):104392. PubMed ID: 35663024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States.
    Tavakkoli S; Feng L; Miller SM; Jordaan SM
    Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits.
    Anderson JJ; Rode DC; Zhai H; Fischbeck PS
    Environ Sci Technol; 2022 Aug; 56(16):11162-11171. PubMed ID: 35926127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.
    McLeod JD; Brinkman GL; Milford JB
    Environ Sci Technol; 2014 Nov; 48(22):13036-44. PubMed ID: 25329514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.
    Heath GA; O'Donoughue P; Arent DJ; Bazilian M
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):E3167-76. PubMed ID: 25049378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.
    Abrahams LS; Samaras C; Griffin WM; Matthews HS
    Environ Sci Technol; 2015 Mar; 49(5):3237-45. PubMed ID: 25650513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of technology assumptions on US power sector capacity, generation and emissions projections: Results from the EMF 32 Model Intercomparison Project.
    Creason JR; Bistline JE; Hodson EL; Murray BC; Rossmann CG
    Energy Econ; 2018; 73():290-306. PubMed ID: 31073253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal investment in electric generating capacity under climate policy.
    Cornelis van Kooten G; Mokhtarzadeh F
    J Environ Manage; 2019 Feb; 232():66-72. PubMed ID: 30468959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decarbonization of the Indian electricity sector: Technology choices and policy trade-offs.
    Rudnick I; Duenas-Martinez P; Botterud A; Papageorgiou DJ; Mignone BK; Rajagopalan S; Harper MR; Ganesan K
    iScience; 2022 Apr; 25(4):104017. PubMed ID: 35359809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse Pathways for Power Sector Decarbonization in Texas Yield Health Cobenefits but Fail to Alleviate Air Pollution Exposure Inequities.
    Luo Q; Copeland B; Garcia-Menendez F; Johnson JX
    Environ Sci Technol; 2022 Sep; 56(18):13274-13283. PubMed ID: 36070515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.
    Bohnengel B; PatiƱo-Echeverri D; Bergerson J
    Environ Sci Technol; 2014 Aug; 48(16):9908-16. PubMed ID: 25025127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunsetting coal power in China.
    Kahrl F; Lin J; Liu X; Hu J
    iScience; 2021 Sep; 24(9):102939. PubMed ID: 34458696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pipeline Availability Limits on the Feasibility of Global Coal-to-Gas Switching in the Power Sector.
    Yang S; Hastings-Simon S; Ravikumar AP
    Environ Sci Technol; 2022 Oct; 56(20):14734-14742. PubMed ID: 36174099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model.
    Ou Y; Kittner N; Babaee S; Smith SJ; Nolte CG; Loughlin DH
    Appl Energy; 2021 Oct; 300():1-117364. PubMed ID: 34764534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology.
    Wei N; Jiao Z; Ellett K; Ku AY; Liu S; Middleton R; Li X
    Environ Sci Technol; 2021 Oct; 55(19):13164-13173. PubMed ID: 34549588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project.
    Bistline JE; Hodson E; Rossmann CG; Creason J; Murray B; Barron AR
    Energy Econ; 2018; 73():307-325. PubMed ID: 31073254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions.
    Lenox C; Kaplan PO
    Energy Econ; 2016; 60():460-468. PubMed ID: 32632338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. US Energy-Related Greenhouse Gas Emissions in the Absence of Federal Climate Policy.
    Eshraghi H; de Queiroz AR; DeCarolis JF
    Environ Sci Technol; 2018 Sep; 52(17):9595-9604. PubMed ID: 30129749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
    Peer RA; Garrison JB; Timms CP; Sanders KT
    Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.