These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35962031)

  • 1. In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis.
    Wang R; Garcia D; Kamath RR; Dou C; Ma X; Shen B; Choo H; Fezzaa K; Yu HZ; Kong ZJ
    Sci Rep; 2022 Aug; 12(1):13716. PubMed ID: 35962031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.
    Calta NP; Wang J; Kiss AM; Martin AA; Depond PJ; Guss GM; Thampy V; Fong AY; Weker JN; Stone KH; Tassone CJ; Kramer MJ; Toney MF; Van Buuren A; Matthews MJ
    Rev Sci Instrum; 2018 May; 89(5):055101. PubMed ID: 29864819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laser powder bed fusion system for operando synchrotron x-ray imaging and correlative diagnostic experiments at the Stanford Synchrotron Radiation Lightsource.
    Martin AA; Wang J; DePond PJ; Strantza M; Forien JB; Gorgannejad S; Guss GM; Thampy V; Fong AY; Weker JN; Stone KH; Tassone CJ; Matthews MJ; Calta NP
    Rev Sci Instrum; 2022 Apr; 93(4):043702. PubMed ID: 35489885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction.
    Zhao C; Fezzaa K; Cunningham RW; Wen H; De Carlo F; Chen L; Rollett AD; Sun T
    Sci Rep; 2017 Jun; 7(1):3602. PubMed ID: 28620232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and Solute Segregation around the Melt-Pool Boundary of Orientation-Controlled 316L Austenitic Stainless Steel Produced by Laser Powder Bed Fusion.
    Sato K; Takagi S; Ichikawa S; Ishimoto T; Nakano T
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal-porosity characterization data of additively manufactured Ti-6Al-4V thin-walled structure via laser engineered net shaping.
    Zamiela C; Tian W; Guo S; Bian L
    Data Brief; 2023 Dec; 51():109722. PubMed ID: 37965595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion.
    Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling.
    Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical instability at moving keyhole tip generates porosity in laser melting.
    Zhao C; Parab ND; Li X; Fezzaa K; Tan W; Rollett AD; Sun T
    Science; 2020 Nov; 370(6520):1080-1086. PubMed ID: 33243887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency domain measurements of melt pool recoil force using modal analysis.
    Cullom T; Lough C; Altese N; Bristow D; Landers R; Brown B; Hartwig T; Barnard A; Blough J; Johnson K; Kinzel E
    Sci Rep; 2021 May; 11(1):10959. PubMed ID: 34040081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast X-ray imaging of laser-metal additive manufacturing processes.
    Parab ND; Zhao C; Cunningham R; Escano LI; Fezzaa K; Everhart W; Rollett AD; Chen L; Sun T
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1467-1477. PubMed ID: 30179187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion.
    Ren Z; Gao L; Clark SJ; Fezzaa K; Shevchenko P; Choi A; Everhart W; Rollett AD; Chen L; Sun T
    Science; 2023 Jan; 379(6627):89-94. PubMed ID: 36603080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping.
    Marshall GJ; Thompson SM; Shamsaei N
    Data Brief; 2016 Jun; 7():697-703. PubMed ID: 27054180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition.
    El-Azab SA; Zhang C; Jiang S; Vyatskikh AL; Valdevit L; Lavernia EJ; Schoenung JM
    Sci Rep; 2023 Oct; 13(1):17705. PubMed ID: 37848463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of Visual Measurement Methods for Metal Vaporization Processes in Laser Powder Bed Fusion.
    Liu J; Wei B; Chang H; Li J; Yang G
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing.
    Wolff SJ; Wu H; Parab N; Zhao C; Ehmann KF; Sun T; Cao J
    Sci Rep; 2019 Jan; 9(1):962. PubMed ID: 30700736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of temperature, stress and microstructure fields during laser deposition of Ti-6Al-4V.
    Ghosh S; McReynolds K; Guyer JE; Banerjee D
    Model Simul Mat Sci Eng; 2018; 26(7):. PubMed ID: 32855586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.