These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35962056)

  • 1. Evaluating and mitigating clinical samples matrix effects on TX-TL cell-free performance.
    Voyvodic PL; Conejero I; Mesmoudi K; Renard E; Courtet P; Cattoni DI; Bonnet J
    Sci Rep; 2022 Aug; 12(1):13785. PubMed ID: 35962056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.
    Moore SJ; Lai HE; Needham H; Polizzi KM; Freemont PS
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28139884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid RNase inhibitor production to enable low-cost, on-demand cell-free protein synthesis biosensor use in human body fluids.
    Soltani M; Hunt JP; Bundy BC
    Biotechnol Bioeng; 2021 Oct; 118(10):3973-3983. PubMed ID: 34185319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Regulation of the RNAse activity of the saliva in healthy subjects and in stomach cancer].
    Kharchenko SV; Shpakov AA
    Izv Akad Nauk SSSR Biol; 1989; (1):58-63. PubMed ID: 2715495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology.
    Sun ZZ; Hayes CA; Shin J; Caschera F; Murray RM; Noireaux V
    J Vis Exp; 2013 Sep; (79):e50762. PubMed ID: 24084388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions.
    Takahashi MK; Hayes CA; Chappell J; Sun ZZ; Murray RM; Noireaux V; Lucks JB
    Methods; 2015 Sep; 86():60-72. PubMed ID: 26022922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Best Practices for DNA Template Preparation Toward Improved Reproducibility in Cell-Free Protein Production.
    Romantseva EF; Tack DS; Alperovich N; Ross D; Strychalski EA
    Methods Mol Biol; 2022; 2433():3-50. PubMed ID: 34985735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleases of human serum, urine, cerebrospinal fluid, and leukocytes. Activity staining following electrophoresis in sodium dodecyl sulfate-polyacrylamide gels.
    Blank A; Dekker CA
    Biochemistry; 1981 Apr; 20(8):2261-7. PubMed ID: 7236597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mammalian RNase inhibitor in cell-free protein synthesis.
    Scheele G; Blackburn P
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4898-902. PubMed ID: 291894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular factor affecting the stability of beta-globin mRNA.
    Stolle CA; Benz EJ
    Gene; 1988; 62(1):65-74. PubMed ID: 3163661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal Protein S1 Improves the Protein Yield of an
    Sheahan T; Wieden HJ
    ACS Synth Biol; 2022 Feb; 11(2):1004-1008. PubMed ID: 35044750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-purification of a ribonuclease and human chorionic gonadotrophin beta-core protein from human urine and displacement of 125I-human luteinizing hormone from Candida albicans binding sites by ribonucleases.
    Griffiths SJ; Bramley TA; Menzies GS; Adams DJ
    Mol Cell Endocrinol; 1997 Oct; 134(1):69-76. PubMed ID: 9406851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid chimeric system for versatile and ultra-sensitive RNase detection.
    Persano S; Vecchio G; Pompa PP
    Sci Rep; 2015 Apr; 5():9558. PubMed ID: 25828752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-yield RNA-extraction method for saliva.
    Pandit P; Cooper-White J; Punyadeera C
    Clin Chem; 2013 Jul; 59(7):1118-22. PubMed ID: 23564756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating minimally invasive sample collection methods for telomere length measurement.
    Goldman EA; Eick GN; Compton D; Kowal P; Snodgrass JJ; Eisenberg DTA; Sterner KN
    Am J Hum Biol; 2018 Jan; 30(1):. PubMed ID: 28949426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of three ribonucleases from human kidney: comparison with urine ribonucleases.
    Mizuta K; Awazu S; Yasuda T; Kishi K
    Arch Biochem Biophys; 1990 Aug; 281(1):144-51. PubMed ID: 2383019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of two ribonucleases from human erythrocytes: immunological and enzymological comparison with ribonucleases from human urine.
    Yasuda T; Mizuta K; Kishi K
    Arch Biochem Biophys; 1990 May; 279(1):130-7. PubMed ID: 2337345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple ribonucleases of human urine.
    Sugiyama RH; Blank A; Dekker CA
    Biochemistry; 1981 Apr; 20(8):2268-74. PubMed ID: 7236598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial purification and characterization of the components of the neutral ribonuclease II-inhibitor system of normal and distrophic mouse skeletal muscle.
    Little BW; Meyer WL
    Can J Biochem; 1981 Mar; 59(3):220-31. PubMed ID: 6261900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approach to non-invasive sampling in dengue diagnostics: exploring virus and NS1 antigen detection in saliva and urine of travelers with dengue.
    Korhonen EM; Huhtamo E; Virtala AM; Kantele A; Vapalahti O
    J Clin Virol; 2014 Nov; 61(3):353-8. PubMed ID: 25242312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.