BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35962165)

  • 1. Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds.
    Sánchez M; Laca A; Laca A; Díaz M
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3901-3917. PubMed ID: 35962165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses.
    Díaz AI; Laca A; Laca A; Díaz M
    Waste Manag; 2017 Sep; 67():59-66. PubMed ID: 28529041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization andfermentation optimization.
    Chatterjee S; Venkata Mohan S
    Bioresour Technol; 2021 Nov; 340():125650. PubMed ID: 34426236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-A review.
    Rodríguez García SL; Raghavan V
    Crit Rev Food Sci Nutr; 2022; 62(23):6446-6466. PubMed ID: 33792417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review.
    Rifna EJ; Misra NN; Dwivedi M
    Crit Rev Food Sci Nutr; 2023; 63(6):719-752. PubMed ID: 34309440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of fruit wastes as natural resources of bioactive compounds.
    Deng GF; Shen C; Xu XR; Kuang RD; Guo YJ; Zeng LS; Gao LL; Lin X; Xie JF; Xia EQ; Li S; Wu S; Chen F; Ling WH; Li HB
    Int J Mol Sci; 2012; 13(7):8308-8323. PubMed ID: 22942704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover.
    Rodríguez-Valderrama S; Escamilla-Alvarado C; Rivas-García P; Magnin JP; Alcalá-Rodríguez M; García-Reyes RB
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28585-28596. PubMed ID: 32266619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive potential of fruit and vegetable wastes.
    Coman V; Teleky BE; Mitrea L; Martău GA; Szabo K; Călinoiu LF; Vodnar DC
    Adv Food Nutr Res; 2020; 91():157-225. PubMed ID: 32035596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry.
    'Aqilah NMN; Rovina K; Felicia WXL; Vonnie JM
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of fruit and vegetable processing by-products/wastes.
    Ozkan G; Günal-Köroğlu D; Capanoglu E
    Adv Food Nutr Res; 2023; 107():1-39. PubMed ID: 37898537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochemicals from fruit and vegetable waste generated in hotels: Optimization of recovery procedure and potential for value-addition.
    Srivastava V; Balakrishnan M
    Waste Manag; 2022 May; 144():401-410. PubMed ID: 35452948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.
    Hafid HS; Nor 'Aini AR; Mokhtar MN; Talib AT; Baharuddin AS; Umi Kalsom MS
    Waste Manag; 2017 Sep; 67():95-105. PubMed ID: 28527863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review.
    Zhu Y; Luan Y; Zhao Y; Liu J; Duan Z; Ruan R
    Foods; 2023 May; 12(10):. PubMed ID: 37238767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking peach juice byproduct potential in food waste biorefineries: Phenolic compounds profile, antioxidant capacity and fermentable sugars.
    García-Aparicio MDP; Castro-Rubio F; Marina ML
    Bioresour Technol; 2024 Mar; 396():130441. PubMed ID: 38360219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High voltage electrical discharges combined with enzymatic hydrolysis for extraction of polyphenols and fermentable sugars from orange peels.
    El Kantar S; Boussetta N; Rajha HN; Maroun RG; Louka N; Vorobiev E
    Food Res Int; 2018 May; 107():755-762. PubMed ID: 29580544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation.
    Dessie W; Zhang W; Xin F; Dong W; Zhang M; Ma J; Jiang M
    Bioresour Technol; 2018 Jan; 247():1177-1180. PubMed ID: 28941663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the Phytochemical and Bioactive Compounds and the Antioxidant Properties of Wolfberry during Vinegar Fermentation Processes.
    Xia T; Qiang X; Geng B; Zhang X; Wang Y; Li S; Meng Y; Zheng Y; Wang M
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors.
    Gulsunoglu-Konuskan Z; Kilic-Akyilmaz M
    J Agric Food Chem; 2022 Jun; 70(23):6901-6910. PubMed ID: 35164503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorization of food wastes with a sequential two-step process for microbial β-carotene production: A zero waste approach.
    Uğurlu Ş; Günan Yücel H; Aksu Z
    J Environ Manage; 2023 Aug; 340():118003. PubMed ID: 37105102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Antioxidant capacity of fruits and vegetables cultivated in Chile].
    Araya H; Clavijo C; Herrera C
    Arch Latinoam Nutr; 2006 Dec; 56(4):361-5. PubMed ID: 17425182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.