These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35962314)

  • 1. Image segmentation and separation of spectrally similar dyes in fluorescence microscopy by dynamic mode decomposition of photobleaching kinetics.
    Wüstner D
    BMC Bioinformatics; 2022 Aug; 23(1):334. PubMed ID: 35962314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells.
    Wüstner D
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation.
    Wüstner D; Landt Larsen A; Faergeman NJ; Brewer JR; Sage D
    Traffic; 2010 Apr; 11(4):440-54. PubMed ID: 20070610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes.
    Wüstner D; Egebjerg JM; Lauritsen L
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging adult C. elegans live using light-sheet microscopy.
    VAN Krugten J; Taris KH; Peterman EJG
    J Microsc; 2021 Mar; 281(3):214-223. PubMed ID: 32949409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photobleaching kinetics and time-integrated emission of fluorescent probes in cellular membranes.
    Wüstner D; Christensen T; Solanko LM; Sage D
    Molecules; 2014 Jul; 19(8):11096-130. PubMed ID: 25076144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolor bleach-rate imaging enlightens in vivo sterol transport.
    Wüstner D; Sage D
    Commun Integr Biol; 2010 Jul; 3(4):370-3. PubMed ID: 20798830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of heterogeneous fluorescence photobleaching by video kinetics imaging: the method of cumulants.
    Koppel DE; Carlson C; Smilowitz H
    J Microsc; 1989 Aug; 155(Pt 2):199-206. PubMed ID: 2795650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time fluorescent image analysis of DNA spot hybridization kinetics to assess microarray spot heterogeneity.
    Rao AN; Rodesch CK; Grainger DW
    Anal Chem; 2012 Nov; 84(21):9379-87. PubMed ID: 23043216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells.
    Benson DM; Bryan J; Plant AL; Gotto AM; Smith LC
    J Cell Biol; 1985 Apr; 100(4):1309-23. PubMed ID: 3920227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent.
    Göttfert F; Pleiner T; Heine J; Westphal V; Görlich D; Sahl SJ; Hell SW
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2125-2130. PubMed ID: 28193881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles.
    Lammertink BHA; Deckers R; Derieppe M; De Cock I; Lentacker I; Storm G; Moonen CTW; Bos C
    Mol Imaging Biol; 2017 Oct; 19(5):683-693. PubMed ID: 28213832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bleaching-Resistant Super-Resolution Fluorescence Microscopy.
    Kwon J; Elgawish MS; Shim SH
    Adv Sci (Weinh); 2022 Mar; 9(9):e2101817. PubMed ID: 35088584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule blinking and photobleaching separated by wide-field fluorescence microscopy.
    Gensch T; Böhmer M; Aramendía PF
    J Phys Chem A; 2005 Aug; 109(30):6652-8. PubMed ID: 16834017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Sensitivity of Fluorescence-Based Immunoassays by Photobleaching the Autofluorescence of Magnetic Beads.
    Roth S; Hadass O; Cohen M; Verbarg J; Wilsey J; Danielli A
    Small; 2019 Jan; 15(3):e1803751. PubMed ID: 30411493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photobleaching kinetics-based bead encoding for multiplexed bioassays.
    Linz TH; Hampton Henley W; Michael Ramsey J
    Lab Chip; 2017 Mar; 17(6):1076-1082. PubMed ID: 28205650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence fluctuation spectroscopy in the presence of immobile fluorophores.
    Skinner JP; Chen Y; Müller JD
    Biophys J; 2008 Mar; 94(6):2349-60. PubMed ID: 18065480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral characterization of Dictyostelium autofluorescence.
    Engel R; Van Haastert PJ; Visser AJ
    Microsc Res Tech; 2006 Mar; 69(3):168-74. PubMed ID: 16538623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Confocal Microscopy imaging denoising with photobleaching.
    Rodrigues I; Xavier J; Sanches J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2205-8. PubMed ID: 19163136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.
    Burnette DT; Sengupta P; Dai Y; Lippincott-Schwartz J; Kachar B
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21081-6. PubMed ID: 22167805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.