These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35962324)

  • 1. Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks.
    Shen Z; Shao YL; Liu W; Zhang Q; Yuan L
    BMC Genomics; 2022 Aug; 23(1):581. PubMed ID: 35962324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning of the back-splicing code for circular RNA formation.
    Wang J; Wang L
    Bioinformatics; 2019 Dec; 35(24):5235-5242. PubMed ID: 31077303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockout of circRNAs by base editing back-splice sites of circularized exons.
    Gao X; Ma XK; Li X; Li GW; Liu CX; Zhang J; Wang Y; Wei J; Chen J; Chen LL; Yang L
    Genome Biol; 2022 Jan; 23(1):16. PubMed ID: 35012611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites.
    Jiang JY; Ju CJ; Hao J; Chen M; Wang W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i289-i298. PubMed ID: 34252942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering.
    Wu Q; Deng Z; Zhang W; Pan X; Choi KS; Zuo Y; Shen HB; Yu DJ
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse complementary matches simultaneously promote both back-splicing and exon-skipping.
    Cao D
    BMC Genomics; 2021 Aug; 22(1):586. PubMed ID: 34344317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning.
    Wang Z; Lei X; Wu FX
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31703384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CircSSNN: circRNA-binding site prediction via sequence self-attention neural networks with pre-normalization.
    Cao C; Yang S; Li M; Li C
    BMC Bioinformatics; 2023 May; 24(1):220. PubMed ID: 37254080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CircMiMi: a stand-alone software for constructing circular RNA-microRNA-mRNA interactions across species.
    Chiang TW; Mai TL; Chuang TJ
    BMC Bioinformatics; 2022 May; 23(1):164. PubMed ID: 35524165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features.
    Deng L; Lin W; Wang J; Zhang J
    BMC Bioinformatics; 2020 Nov; 21(1):519. PubMed ID: 33183227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs.
    Zhou Y; Wu J; Yao S; Xu Y; Zhao W; Tong Y; Zhou Z
    Comput Biol Med; 2023 Sep; 164():107288. PubMed ID: 37542919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cancer progression by circRNA and functional proteins.
    Chen J; Gu J; Tang M; Liao Z; Tang R; Zhou L; Su M; Jiang J; Hu Y; Chen Y; Zhou Y; Liao Q; Xiong W; Zhou J; Tang Y; Nie S
    J Cell Physiol; 2022 Jan; 237(1):373-388. PubMed ID: 34676546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks.
    Yuan L; Yang Y
    Front Genet; 2020; 11():632861. PubMed ID: 33552144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.