These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35962395)
1. Integration of CD34 Li XP; Zhang WN; Mao JY; Zhao BT; Jiang L; Gao Y J Transl Med; 2022 Aug; 20(1):359. PubMed ID: 35962395 [TBL] [Abstract][Full Text] [Related]
2. Clinical significance of CD34 Li X; Dai Y; Chen B; Huang J; Chen S; Jiang L Front Med; 2021 Aug; 15(4):608-620. PubMed ID: 33754282 [TBL] [Abstract][Full Text] [Related]
3. A Comprehensive Metabolism-Related Gene Signature Predicts the Survival of Patients with Acute Myeloid Leukemia. Zhai Y; Shen H; Wei H Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254953 [TBL] [Abstract][Full Text] [Related]
4. Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute myelogenous leukemia identifies the subtype with poor outcome. Jiang L; Li XP; Dai YT; Chen B; Weng XQ; Xiong SM; Zhang M; Huang JY; Chen Z; Chen SJ Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20117-20126. PubMed ID: 32747558 [TBL] [Abstract][Full Text] [Related]
5. Prognosis and Characterization of Immune Microenvironment in Acute Myeloid Leukemia Through Identification of an Autophagy-Related Signature. Fu D; Zhang B; Wu S; Zhang Y; Xie J; Ning W; Jiang H Front Immunol; 2021; 12():695865. PubMed ID: 34135913 [TBL] [Abstract][Full Text] [Related]
6. Establishment and validation of a prognostic immune-related lncRNA risk model for acute myeloid leukemia. Xie KY; Chen SZ; Wang Y; Zeng ML; Liu XY; Liang Y; Wei J Transl Cancer Res; 2023 Dec; 12(12):3693-3702. PubMed ID: 38192996 [TBL] [Abstract][Full Text] [Related]
7. CD117/CD34 expression in leukemic blasts. Wells SJ; Bray RA; Stempora LL; Farhi DC Am J Clin Pathol; 1996 Aug; 106(2):192-5. PubMed ID: 8712172 [TBL] [Abstract][Full Text] [Related]
8. A telomere-related gene risk model for predicting prognosis and treatment response in acute myeloid leukemia. Shi HZ; Wang MW; Huang YS; Liu Z; Li L; Wan LP Heliyon; 2024 Jun; 10(11):e31705. PubMed ID: 38845982 [TBL] [Abstract][Full Text] [Related]
9. Identification and validation of a siglec-based and aging-related 9-gene signature for predicting prognosis in acute myeloid leukemia patients. Shi H; Gao L; Zhang W; Jiang M BMC Bioinformatics; 2022 Jul; 23(1):284. PubMed ID: 35854240 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a novel survival model for acute myeloid leukemia based on autophagy-related genes. Huang L; Lin L; Fu X; Meng C PeerJ; 2021; 9():e11968. PubMed ID: 34447636 [TBL] [Abstract][Full Text] [Related]
11. Identification and validation of a 7-genes prognostic signature for adult acute myeloid leukemia based on aging-related genes. Ke P; Zhu Q; Xu T; Yang X; Wang Y; Qiu H; Wu D; Bao X; Chen S Aging (Albany NY); 2023 Jun; 15(12):5826-5853. PubMed ID: 37367950 [TBL] [Abstract][Full Text] [Related]
12. Molecular subtyping of acute myeloid leukemia through ferroptosis signatures predicts prognosis and deciphers the immune microenvironment. Fu D; Zhang B; Wu S; Feng J; Jiang H Front Cell Dev Biol; 2023; 11():1207642. PubMed ID: 37691822 [TBL] [Abstract][Full Text] [Related]
13. Identification and validation of potential prognostic gene biomarkers for predicting survival in patients with acute myeloid leukemia. Huang R; Liao X; Li Q Onco Targets Ther; 2017; 10():5243-5254. PubMed ID: 29138577 [TBL] [Abstract][Full Text] [Related]
14. Expression of CD90, CD96, CD117, and CD123 on different hematopoietic cell populations from pediatric patients with acute myeloid leukemia. Chávez-González A; Dorantes-Acosta E; Moreno-Lorenzana D; Alvarado-Moreno A; Arriaga-Pizano L; Mayani H Arch Med Res; 2014 May; 45(4):343-50. PubMed ID: 24751333 [TBL] [Abstract][Full Text] [Related]
15. Prognostic insights and immune microenvironment delineation in acute myeloid leukemia by ferroptosis-derived signature. Jing L; Zhang B; Sun J; Feng J; Fu D Heliyon; 2024 Mar; 10(6):e28237. PubMed ID: 38532996 [TBL] [Abstract][Full Text] [Related]
16. A Novel 85-Gene Expression Signature Predicts Unfavorable Prognosis in Acute Myeloid Leukemia. Lai Y; Sheng L; Wang J; Zhou M; OuYang G Technol Cancer Res Treat; 2021; 20():15330338211004933. PubMed ID: 33784904 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive Analysis of Gao Y; Li JY; Mao JY; Zhou JF; Jiang L; Li XP Front Genet; 2022; 13():923568. PubMed ID: 35938037 [TBL] [Abstract][Full Text] [Related]
18. A novel fatty acid metabolism-related signature identifies features of the tumor microenvironment and predicts clinical outcome in acute myeloid leukemia. Zhang HB; Sun ZK; Zhong FM; Yao FY; Liu J; Zhang J; Zhang N; Lin J; Li SQ; Li MY; Jiang JY; Cheng Y; Xu S; Cheng XX; Huang B; Wang XZ Lipids Health Dis; 2022 Aug; 21(1):79. PubMed ID: 36002858 [TBL] [Abstract][Full Text] [Related]
19. Construction of an acute myeloid leukemia prognostic model based on m6A-related efferocytosis-related genes. Wang Y; Bin T; Tang J; Xu XJ; Lin C; Lu B; Sun TT Front Immunol; 2023; 14():1268090. PubMed ID: 38077322 [TBL] [Abstract][Full Text] [Related]
20. A novel immune-related gene signature correlated with serum IL33 expression in acute myeloid leukemia prognosis. Xie JY; Wang WJ; Wang N; Dong Q; Han H; Feng YP; Yuan Y; Feng J; Chen K Am J Transl Res; 2023; 15(6):4332-4344. PubMed ID: 37434810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]