These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35962411)
1. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Zhang K; He J; Yin Y; Chen K; Deng X; Yu P; Li H; Zhao W; Yan S; Li M Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):83. PubMed ID: 35962411 [TBL] [Abstract][Full Text] [Related]
2. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed ( Zhang K; Nie L; Cheng Q; Yin Y; Chen K; Qi F; Zou D; Liu H; Zhao W; Wang B; Li M Biotechnol Biofuels; 2019; 12():225. PubMed ID: 31548867 [TBL] [Abstract][Full Text] [Related]
3. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
4. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
6. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. Tang S; Guo N; Tang Q; Peng F; Liu Y; Xia H; Lu S; Guo L Plant Biotechnol J; 2022 Dec; 20(12):2406-2417. PubMed ID: 36056567 [TBL] [Abstract][Full Text] [Related]
7. Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in Gong W; Chen W; Gao Q; Qian L; Yuan X; Tang S; Hong Y Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003299 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation. Fenyk S; Woodfield HK; Romsdahl TB; Wallington EJ; Bates RE; Fell DA; Chapman KD; Fawcett T; Harwood JL Biochem J; 2022 Mar; 479(6):805-823. PubMed ID: 35298586 [TBL] [Abstract][Full Text] [Related]
9. Comparative Transcriptomic Analysis of Two Wang J; Singh SK; Du C; Li C; Fan J; Pattanaik S; Yuan L Front Plant Sci; 2016; 7():1498. PubMed ID: 27746810 [TBL] [Abstract][Full Text] [Related]
10. 3D genome structural variations play important roles in regulating seed oil content of Brassica napus. Zhang L; Liu L; Li H; He J; Chao H; Yan S; Yin Y; Zhao W; Li M Plant Commun; 2024 Jan; 5(1):100666. PubMed ID: 37496273 [TBL] [Abstract][Full Text] [Related]
11. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Chen K; Yin Y; Ding Y; Chao H; Li M Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835614 [No Abstract] [Full Text] [Related]
13. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712 [TBL] [Abstract][Full Text] [Related]
14. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. Tang S; Peng F; Tang Q; Liu Y; Xia H; Yao X; Lu S; Guo L J Adv Res; 2022 Dec; 42():29-40. PubMed ID: 35907629 [TBL] [Abstract][Full Text] [Related]
15. [Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Zhou Y; Huang X; Hao Y; Cai G; Shi X; Li R; Wang J Sheng Wu Gong Cheng Xue Bao; 2022 Aug; 38(8):3014-3028. PubMed ID: 36002428 [TBL] [Abstract][Full Text] [Related]
16. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Liang Y; Kang K; Gan L; Ning S; Xiong J; Song S; Xi L; Lai S; Yin Y; Gu J; Xiang J; Li S; Wang B; Li M Plant Biotechnol J; 2019 Nov; 17(11):2123-2142. PubMed ID: 30972883 [TBL] [Abstract][Full Text] [Related]
17. Heat Stress Suppresses Brassica napus Seed Oil Accumulation by Inhibition of Photosynthesis and BnWRI1 Pathway. Huang R; Liu Z; Xing M; Yang Y; Wu X; Liu H; Liang W Plant Cell Physiol; 2019 Jul; 60(7):1457-1470. PubMed ID: 30994920 [TBL] [Abstract][Full Text] [Related]
18. Identification of candidate genes regulating seed oil content by QTL mapping and transcriptome sequencing in Xiao Z; Zhang C; Qu C; Wei L; Zhang L; Yang B; Lu K; Li J Front Plant Sci; 2022; 13():1067121. PubMed ID: 36570918 [TBL] [Abstract][Full Text] [Related]
19. Tandem Mass Tag-Based Quantitative Proteomics Reveals Implication of a Late Embryogenesis Abundant Protein (BnLEA57) in Seed Oil Accumulation in Zhou Z; Lin B; Tan J; Hao P; Hua S; Deng Z Front Plant Sci; 2022; 13():907244. PubMed ID: 35720596 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. Chen J; Hu Y; Zhao T; Huang C; Chen J; He L; Dai F; Chen S; Wang L; Jin S; Zhang T BMC Biol; 2024 May; 22(1):110. PubMed ID: 38735918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]