BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35962471)

  • 1. Loss of function of an Arabidopsis homologue of JMJD6 suppresses the dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis.
    Matsuo H; Fukushima H; Kurokawa S; Kawano E; Okamoto T; Motose H; Takahashi T
    FEBS Lett; 2022 Dec; 596(23):3005-3014. PubMed ID: 35962471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis.
    Cai Q; Fukushima H; Yamamoto M; Ishii N; Sakamoto T; Kurata T; Motose H; Takahashi T
    Plant Cell Physiol; 2016 Aug; 57(8):1583-92. PubMed ID: 27388339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana.
    Shinohara S; Okamoto T; Motose H; Takahashi T
    Plant J; 2019 Oct; 100(2):374-383. PubMed ID: 31257654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana.
    Yoshimoto K; Noutoshi Y; Hayashi K; Shirasu K; Takahashi T; Motose H
    Plant Cell Physiol; 2012 Apr; 53(4):635-45. PubMed ID: 22345435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of the dwarf phenotype of an Arabidopsis mutant defective in thermospermine biosynthesis by a synonymous codon change in the SAC51 uORF.
    Nishii Y; Koyama D; Fukushima H; Takahashi T
    Mol Genet Genomics; 2023 Nov; 298(6):1505-1514. PubMed ID: 37845372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermospermine enhances translation of SAC51 and SACL1 in Arabidopsis.
    Yamamoto M; Takahashi T
    Plant Signal Behav; 2017 Jan; 12(1):e1276685. PubMed ID: 28045577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of the acl5 mutant in Arabidopsis thaliana.
    Imai A; Komura M; Kawano E; Kuwashiro Y; Takahashi T
    Plant J; 2008 Dec; 56(6):881-90. PubMed ID: 18694459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.
    Kakehi J; Kawano E; Yoshimoto K; Cai Q; Imai A; Takahashi T
    PLoS One; 2015; 10(1):e0117309. PubMed ID: 25625317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene.
    Imai A; Hanzawa Y; Komura M; Yamamoto KT; Komeda Y; Takahashi T
    Development; 2006 Sep; 133(18):3575-85. PubMed ID: 16936072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermospermine is required for stem elongation in Arabidopsis thaliana.
    Kakehi J; Kuwashiro Y; Niitsu M; Takahashi T
    Plant Cell Physiol; 2008 Sep; 49(9):1342-9. PubMed ID: 18669523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.
    Yoshimoto K; Noutoshi Y; Hayashi K; Shirasu K; Takahashi T; Motose H
    Plant Signal Behav; 2012 Aug; 7(8):937-9. PubMed ID: 22751360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexity and Conservation of Thermospermine-Responsive uORFs of
    Ishitsuka S; Yamamoto M; Miyamoto M; Kuwashiro Y; Imai A; Motose H; Takahashi T
    Front Plant Sci; 2019; 10():564. PubMed ID: 31118941
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem.
    Milhinhos A; Prestele J; Bollhöner B; Matos A; Vera-Sirera F; Rambla JL; Ljung K; Carbonell J; Blázquez MA; Tuominen H; Miguel CM
    Plant J; 2013 Aug; 75(4):685-98. PubMed ID: 23647338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermospermine is not a minor polyamine in the plant kingdom.
    Takano A; Kakehi J; Takahashi T
    Plant Cell Physiol; 2012 Apr; 53(4):606-16. PubMed ID: 22366038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module.
    Baima S; Forte V; Possenti M; Peñalosa A; Leoni G; Salvi S; Felici B; Ruberti I; Morelli G
    Mol Plant; 2014 Jun; 7(6):1006-1025. PubMed ID: 24777988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death.
    Muñiz L; Minguet EG; Singh SK; Pesquet E; Vera-Sirera F; Moreau-Courtois CL; Carbonell J; Blázquez MA; Tuominen H
    Development; 2008 Aug; 135(15):2573-82. PubMed ID: 18599510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermospermine: An Evolutionarily Ancient but Functionally New Compound in Plants.
    Takahashi T
    Methods Mol Biol; 2018; 1694():51-59. PubMed ID: 29080154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana.
    Kakehi J; Kuwashiro Y; Motose H; Igarashi K; Takahashi T
    FEBS Lett; 2010 Jul; 584(14):3042-6. PubMed ID: 20580714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Thermospermine on the Growth and Expression of Polyamine-Related Genes in Rice Seedlings.
    Miyamoto M; Shimao S; Tong W; Motose H; Takahashi T
    Plants (Basel); 2019 Aug; 8(8):. PubMed ID: 31390771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress.
    Naka Y; Watanabe K; Sagor GH; Niitsu M; Pillai MA; Kusano T; Takahashi Y
    Plant Physiol Biochem; 2010 Jul; 48(7):527-33. PubMed ID: 20137962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.