These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35962985)

  • 21. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.
    Su C; Nguyen TD; Zheng J; Kwoh CK
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S9. PubMed ID: 25521441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GDockScore: a graph-based protein-protein docking scoring function.
    McFee M; Kim PM
    Bioinform Adv; 2023; 3(1):vbad072. PubMed ID: 37359726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A combinatorial scoring function for protein-RNA docking.
    Zhang Z; Lu L; Zhang Y; Hua Li C; Wang CX; Zhang XY; Tan JJ
    Proteins; 2017 Apr; 85(4):741-752. PubMed ID: 28120375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge of Native Protein-Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates.
    Popov P; Grudinin S
    J Chem Inf Model; 2015 Oct; 55(10):2242-55. PubMed ID: 26353078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein-ensemble-RNA docking by efficient consideration of protein flexibility through homology models.
    He J; Tao H; Huang SY
    Bioinformatics; 2019 Dec; 35(23):4994-5002. PubMed ID: 31086984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ClusPro: an automated docking and discrimination method for the prediction of protein complexes.
    Comeau SR; Gatchell DW; Vajda S; Camacho CJ
    Bioinformatics; 2004 Jan; 20(1):45-50. PubMed ID: 14693807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function.
    Myung Y; Pires DEV; Ascher DB
    Bioinformatics; 2022 Jan; 38(4):1141-1143. PubMed ID: 34734992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-protein docking using region-based 3D Zernike descriptors.
    Venkatraman V; Yang YD; Sael L; Kihara D
    BMC Bioinformatics; 2009 Dec; 10():407. PubMed ID: 20003235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo replica-exchange based ensemble docking of protein conformations.
    Zhang Z; Ehmann U; Zacharias M
    Proteins; 2017 May; 85(5):924-937. PubMed ID: 28168752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient flexible backbone protein-protein docking for challenging targets.
    Marze NA; Roy Burman SS; Sheffler W; Gray JJ
    Bioinformatics; 2018 Oct; 34(20):3461-3469. PubMed ID: 29718115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein docking by Rotation-Based Uniform Sampling (RotBUS) with fast computing of intermolecular contact distance and residue desolvation.
    Solernou A; Fernandez-Recio J
    BMC Bioinformatics; 2010 Jun; 11():352. PubMed ID: 20584304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing ensembles of flexible fragments in native proteins by iterative stochastic elimination is relevant to protein-protein interfaces.
    Noy E; Tabakman T; Goldblum A
    Proteins; 2007 Aug; 68(3):702-11. PubMed ID: 17510963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution.
    Andreani J; Faure G; Guerois R
    Bioinformatics; 2013 Jul; 29(14):1742-9. PubMed ID: 23652426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EROS-DOCK: protein-protein docking using exhaustive branch-and-bound rotational search.
    Ruiz Echartea ME; Chauvot de BeauchĂȘne I; Ritchie DW
    Bioinformatics; 2019 Dec; 35(23):5003-5010. PubMed ID: 31125060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ranking Docked Models of Protein-Protein Complexes Using Predicted Partner-Specific Protein-Protein Interfaces: A Preliminary Study.
    Xue LC; Jordan RA; El-Manzalawy Y; Dobbs D; Honavar V
    ACM BCB; 2011 Aug; 2011():441-445. PubMed ID: 25905110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification and prediction of protein-protein interaction interface using machine learning algorithm.
    Das S; Chakrabarti S
    Sci Rep; 2021 Jan; 11(1):1761. PubMed ID: 33469042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.