These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35962985)

  • 41. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting bioactive conformations and binding modes of macrocycles.
    Anighoro A; de la Vega de León A; Bajorath J
    J Comput Aided Mol Des; 2016 Oct; 30(10):841-849. PubMed ID: 27655412
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions.
    Brylinski M
    Chem Biol Drug Des; 2018 Feb; 91(2):380-390. PubMed ID: 28816025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of protein conformational diversity on AlphaFold predictions.
    Saldaño T; Escobedo N; Marchetti J; Zea DJ; Mac Donagh J; Velez Rueda AJ; Gonik E; García Melani A; Novomisky Nechcoff J; Salas MN; Peters T; Demitroff N; Fernandez Alberti S; Palopoli N; Fornasari MS; Parisi G
    Bioinformatics; 2022 May; 38(10):2742-2748. PubMed ID: 35561203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Data Mining Meets Machine Learning: A Novel ANN-based Multi-body Interaction Docking Scoring Function (MBI-score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein-ligand Complexes.
    Khashan R; Tropsha A; Zheng W
    Mol Inform; 2022 Aug; 41(8):e2100248. PubMed ID: 35142086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A scoring function for the prediction of protein complex interfaces based on the neighborhood preferences of amino acids.
    Nagaraju M; Liu H
    Acta Crystallogr D Struct Biol; 2023 Jan; 79(Pt 1):31-39. PubMed ID: 36601805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen bonds and salt bridges across protein-protein interfaces.
    Xu D; Tsai CJ; Nussinov R
    Protein Eng; 1997 Sep; 10(9):999-1012. PubMed ID: 9464564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces.
    Sanchez-Garcia R; Sorzano COS; Carazo JM; Segura J
    Bioinformatics; 2019 Feb; 35(3):470-477. PubMed ID: 30020406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance.
    Hauser AS; Windshügel B
    J Chem Inf Model; 2016 Jan; 56(1):188-200. PubMed ID: 26651532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A continuum model for protein-protein interactions: application to the docking problem.
    Jackson RM; Sternberg MJ
    J Mol Biol; 1995 Jul; 250(2):258-75. PubMed ID: 7541840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ASES: visualizing evolutionary conservation of alternative splicing in proteins.
    Zea DJ; Richard H; Laine E
    Bioinformatics; 2022 Apr; 38(9):2615-2616. PubMed ID: 35188186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. LightDock: a new multi-scale approach to protein-protein docking.
    Jiménez-García B; Roel-Touris J; Romero-Durana M; Vidal M; Jiménez-González D; Fernández-Recio J
    Bioinformatics; 2018 Jan; 34(1):49-55. PubMed ID: 28968719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets.
    Yu J; Guerois R
    Bioinformatics; 2016 Dec; 32(24):3760-3767. PubMed ID: 27551106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A unified conformational selection and induced fit approach to protein-peptide docking.
    Trellet M; Melquiond AS; Bonvin AM
    PLoS One; 2013; 8(3):e58769. PubMed ID: 23516555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.
    Malhotra S; Sankar K; Sowdhamini R
    PLoS One; 2014; 9(2):e80255. PubMed ID: 24498255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Refining near-native protein-protein docking decoys by local resampling and energy minimization.
    Liang S; Wang G; Zhou Y
    Proteins; 2009 Aug; 76(2):309-16. PubMed ID: 19156819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D-Garden: a system for modelling protein-protein complexes based on conformational refinement of ensembles generated with the marching cubes algorithm.
    Lesk VI; Sternberg MJ
    Bioinformatics; 2008 May; 24(9):1137-44. PubMed ID: 18326508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.