These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35963053)

  • 1. Greasy fingermark detection on porous surfaces using Oil red O in a gas phase: Comparison with Oil red O in solution.
    Klemczak K; Kozdrój-Miler K; Siejca A; Lityński K; Leśniewski A
    Forensic Sci Int; 2022 Oct; 339():111417. PubMed ID: 35963053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nile red: Alternative to physical developer for the detection of latent fingermarks on wet porous surfaces?
    Braasch K; de la Hunty M; Deppe J; Spindler X; Cantu AA; Maynard P; Lennard C; Roux C
    Forensic Sci Int; 2013 Jul; 230(1-3):74-80. PubMed ID: 23611533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of carrier solvent in 1,2-indanedione formulation on the development of fingermarks on porous substrates.
    Zhao YB; Wang LX; Li WJ; You W; Farrugia K
    Forensic Sci Int; 2021 Jan; 318():110589. PubMed ID: 33248326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of bloody fingerprints on non-porous surfaces using Lac dye (Laccifer lacca).
    Chingthongkham P; Chomean S; Suppajariyawat P; Kaset C
    Forensic Sci Int; 2020 Feb; 307():110119. PubMed ID: 31869652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and application of an aqueous nile red microemulsion for the development of fingermarks on porous surfaces.
    de la Hunty M; Spindler X; Chadwick S; Lennard C; Roux C
    Forensic Sci Int; 2014 Nov; 244():e48-55. PubMed ID: 25256072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ORO. The physical developer replacement?
    Wood MA; James T
    Sci Justice; 2009 Dec; 49(4):272-6. PubMed ID: 20120606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Frameworks for fingermark detection - A feasibility study.
    Moret S; Scott E; Barone A; Liang K; Lennard C; Roux C; Spindler X
    Forensic Sci Int; 2018 Oct; 291():83-93. PubMed ID: 30172095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of alizarin and purpurin dyes for their ability to visualize latent fingermark on porous surfaces.
    Berkil Akar K
    Sci Justice; 2021 Mar; 61(2):130-141. PubMed ID: 33736845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of corrosive substances on fingermark recovery: A pilot study.
    Masterson A; Bleay S
    Sci Justice; 2021 Sep; 61(5):617-626. PubMed ID: 34482942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding physical developer (PD): Part I--Is PD targeting lipids?
    de la Hunty M; Moret S; Chadwick S; Lennard C; Spindler X; Roux C
    Forensic Sci Int; 2015 Dec; 257():481-487. PubMed ID: 26282793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of some of the factors influencing fingermark detection.
    Chadwick S; Moret S; Jayashanka N; Lennard C; Spindler X; Roux C
    Forensic Sci Int; 2018 Aug; 289():381-389. PubMed ID: 29960948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of scanning Kelvin probe with SEM/EPMA techniques for fingermark recovery from metallic surfaces.
    Challinger SE; Baikie ID; Flannigan G; Halls S; Laing K; Daly L; Nic Daeid N
    Forensic Sci Int; 2018 Oct; 291():44-52. PubMed ID: 30138750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the columnar-thin-film and vacuum-metal-deposition techniques to develop sebaceous fingermarks on nonporous substrates.
    Williams SF; Pulsifer DP; Shaler RC; Ramotowski RS; Brazelle S; Lakhtakia A
    J Forensic Sci; 2015 Mar; 60(2):295-302. PubMed ID: 25421147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fingermark detection based on the in situ growth of luminescent nanoparticles--towards a new generation of multimetal deposition.
    Becue A; Scoundrianos A; Champod C; Margot P
    Forensic Sci Int; 2008 Jul; 179(1):39-43. PubMed ID: 18502068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of artificial fingermarks. Part I - Synthetic secretions formulation.
    Steiner R; Roux C; Moret S
    Forensic Sci Int; 2022 Feb; 331():111166. PubMed ID: 34973483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fixing latent fingermarks developed by iodine fuming: a new method.
    Jasuja OP; Kaur A; Kumar P
    Forensic Sci Int; 2012 Nov; 223(1-3):e47-52. PubMed ID: 23103178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single metal deposition versus physical developer: A comparison between two advanced fingermark detection techniques.
    Moret S; Lee PLT; de la Hunty M; Spindler X; Lennard C; Roux C
    Forensic Sci Int; 2019 Jan; 294():103-112. PubMed ID: 30500490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evaluation of fingermarks given activity level propositions.
    de Ronde A; Kokshoorn B; de Poot CJ; de Puit M
    Forensic Sci Int; 2019 Sep; 302():109904. PubMed ID: 31472445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the chemical changes in fingermark residue over time using synchrotron infrared spectroscopy.
    Boseley RE; Vongsvivut J; Appadoo D; Hackett MJ; Lewis SW
    Analyst; 2022 Feb; 147(5):799-810. PubMed ID: 35174821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further investigations into the single metal deposition (SMD II) technique for the detection of latent fingermarks.
    Newland TG; Moret S; Bécue A; Lewis SW
    Forensic Sci Int; 2016 Nov; 268():62-72. PubMed ID: 27693827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.