BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35963351)

  • 1. A comprehensive investigation on modified cellulose nanocrystals and their films properties.
    El Miri N; Heggset EB; Wallsten S; Svedberg A; Syverud K; Norgren M
    Int J Biol Macromol; 2022 Oct; 219():998-1008. PubMed ID: 35963351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities.
    Nypelö T; Amer H; Konnerth J; Potthast A; Rosenau T
    Biomacromolecules; 2018 Mar; 19(3):973-979. PubMed ID: 29414240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging.
    Leite LSF; Bilatto S; Paschoalin RT; Soares AC; Moreira FKV; Oliveira ON; Mattoso LHC; Bras J
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2974-2983. PubMed ID: 33122067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals.
    Sirviö JA; Honkaniemi S; Visanko M; Liimatainen H
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19691-9. PubMed ID: 26280660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Barrier and Mechanical Properties of Cellulose Nanocrystals by Blending with Chitin Nanofibers.
    Satam CC; Irvin CW; Coffey CJ; Geran RK; Ibarra-Rivera R; Shofner ML; Meredith JC
    Biomacromolecules; 2020 Feb; 21(2):545-555. PubMed ID: 31747262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties.
    Plappert SF; Quraishi S; Pircher N; Mikkonen KS; Veigel S; Klinger KM; Potthast A; Rosenau T; Liebner FW
    Biomacromolecules; 2018 Jul; 19(7):2969-2978. PubMed ID: 29757619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some modification of cellulose nanocrystals for functional Pickering emulsions.
    Saidane D; Perrin E; Cherhal F; Guellec F; Capron I
    Philos Trans A Math Phys Eng Sci; 2016 Jul; 374(2072):. PubMed ID: 27298429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Silane-Grafted Cellulose Nanocrystals and Their Effects on the Structural, Thermal, Mechanical, and Hysteretic Behavior of Thermoplastic Polyurethane.
    Sun X; Yang X; Zhang J; Shang B; Lyu P; Zhang C; Liu X; Xia L
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
    da Silva JB; Pereira FV; Druzian JI
    J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane.
    Khanjanzadeh H; Behrooz R; Bahramifar N; Gindl-Altmutter W; Bacher M; Edler M; Griesser T
    Int J Biol Macromol; 2018 Jan; 106():1288-1296. PubMed ID: 28855133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanocrystal/amino-aldehyde biocomposite films.
    Nagy S; Csiszár E; Kun D; Koczka B
    Carbohydr Polym; 2018 Aug; 194():51-60. PubMed ID: 29801858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer.
    Visanko M; Liimatainen H; Sirviö JA; Heiskanen JP; Niinimäki J; Hormi O
    Biomacromolecules; 2014 Jul; 15(7):2769-75. PubMed ID: 24946006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth.
    Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li A; Li S; Liu M; Luo S; Zhang D
    Int J Biol Macromol; 2019 May; 129():878-886. PubMed ID: 30735776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Nanocrystals Reinforced Zein/Catechin/β-Cyclodextrin Inclusion Complex Nanoparticles Nanocomposite Film for Active Food Packaging.
    Jiang L; Han Y; Meng X; Xiao Y; Zhang H
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films.
    Sukyai P; Anongjanya P; Bunyahwuthakul N; Kongsin K; Harnkarnsujarit N; Sukatta U; Sothornvit R; Chollakup R
    Food Res Int; 2018 May; 107():528-535. PubMed ID: 29580516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin.
    Sung SH; Chang Y; Han J
    Carbohydr Polym; 2017 Aug; 169():495-503. PubMed ID: 28504172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.