These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35963352)
1. Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties. Dias IKR; Siqueira GA; Arantes V Int J Biol Macromol; 2022 Nov; 220():589-600. PubMed ID: 35963352 [TBL] [Abstract][Full Text] [Related]
2. High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose. Dias IKR; Lacerda BK; Arantes V Int J Biol Macromol; 2023 Jul; 242(Pt 4):125053. PubMed ID: 37244329 [TBL] [Abstract][Full Text] [Related]
3. Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse. Jia L; Gonçalves GA; Takasugi Y; Mori Y; Noda S; Tanaka T; Ichinose H; Kamiya N Bioresour Technol; 2015 Jun; 185():158-64. PubMed ID: 25768418 [TBL] [Abstract][Full Text] [Related]
4. Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: A comparative study of their main properties and in vitro biological responses. Claro AM; Dias IKR; Fontes ML; Colturato VMM; Lima LR; Sávio LB; Berto GL; Arantes V; Barud HDS Carbohydr Res; 2024 May; 539():109104. PubMed ID: 38643706 [TBL] [Abstract][Full Text] [Related]
5. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653 [TBL] [Abstract][Full Text] [Related]
6. Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Teixeira RS; da Silva AS; Jang JH; Kim HW; Ishikawa K; Endo T; Lee SH; Bon EP Carbohydr Polym; 2015 Sep; 128():75-81. PubMed ID: 26005141 [TBL] [Abstract][Full Text] [Related]
7. Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Penttilä PA; Várnai A; Pere J; Tammelin T; Salmén L; Siika-aho M; Viikari L; Serimaa R Bioresour Technol; 2013 Feb; 129():135-41. PubMed ID: 23238342 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Chen XQ; Deng XY; Shen WH; Jia MY Carbohydr Polym; 2018 Feb; 181():879-884. PubMed ID: 29254049 [TBL] [Abstract][Full Text] [Related]
9. Enzymatically produced cellulose nanocrystals as reinforcement for waterborne polyurethane and its applications. Alonso-Lerma B; Larraza I; Barandiaran L; Ugarte L; Saralegi A; Corcuera MA; Perez-Jimenez R; Eceiza A Carbohydr Polym; 2021 Feb; 254():117478. PubMed ID: 33357930 [TBL] [Abstract][Full Text] [Related]
10. An enzymatic hydrolysis-based platform technology for the efficient high-yield production of cellulose nanospheres. Yupanqui-Mendoza SL; Arantes V Int J Biol Macromol; 2024 Oct; 278(Pt 1):134602. PubMed ID: 39127282 [TBL] [Abstract][Full Text] [Related]
11. Production and Characterization of Cellulose Nanocrystals from Eucalyptus Dissolving Pulp Using Endoglucanases from Waghmare P; Xu N; Waghmare P; Liu G; Qu Y; Li X; Zhao J Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445866 [TBL] [Abstract][Full Text] [Related]
12. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Bura R; Chandra R; Saddler J Biotechnol Prog; 2009; 25(2):315-22. PubMed ID: 19266561 [TBL] [Abstract][Full Text] [Related]
13. [Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: production, properties, and applications for the saccharification of plant material]. Belova OV; Lisov AV; Vinokurova NG; Kostenevich AA; Sapunova LI; Lobanok AG; Leont'evskiĭ AA Prikl Biokhim Mikrobiol; 2014; 50(2):171-6. PubMed ID: 25272734 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the reinforcing potential of enzymatic cellulose nanocrystals in polypropylene nanocomposite. Benini KCCC; Arantes V Carbohydr Res; 2024 Aug; 542():109171. PubMed ID: 38875904 [TBL] [Abstract][Full Text] [Related]
15. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Hu J; Arantes V; Saddler JN Biotechnol Biofuels; 2011 Oct; 4():36. PubMed ID: 21974832 [TBL] [Abstract][Full Text] [Related]
16. Cellulose nanostructures obtained using enzymatic cocktails with different compositions. Bondancia TJ; Florencio C; Baccarin GS; Farinas CS Int J Biol Macromol; 2022 May; 207():299-307. PubMed ID: 35259434 [TBL] [Abstract][Full Text] [Related]
17. Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. Tuncer M; Kuru A; Isikli M; Sahin N; Celenk FG J Appl Microbiol; 2004; 97(4):783-91. PubMed ID: 15357728 [TBL] [Abstract][Full Text] [Related]
18. Impact of xylan on synergistic effects of xylanases and cellulases in enzymatic hydrolysis of lignocelluloses. Zhang J; Viikari L Appl Biochem Biotechnol; 2014 Oct; 174(4):1393-1402. PubMed ID: 25113551 [TBL] [Abstract][Full Text] [Related]
19. Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals. Gabriel T; Wondu K; Dilebo J PLoS One; 2021; 16(2):e0246794. PubMed ID: 33561156 [TBL] [Abstract][Full Text] [Related]
20. Exploring xylan removal via enzymatic post-treatment to tailor the properties of cellulose nanofibrils for packaging film applications. Las-Casas B; Arantes V Int J Biol Macromol; 2024 Aug; 274(Pt 2):133325. PubMed ID: 38908627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]