BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35963410)

  • 1. The fate of aggregated graphene oxide upon the increasing of pH: An experimental and molecular dynamic study.
    Li W; Yu J; Zhang S; Tang H; Huang T
    Sci Total Environ; 2022 Dec; 851(Pt 1):157954. PubMed ID: 35963410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the Aggregation of Graphene Oxide at High pH: Roles of Oxidation Debris and Metal Adsorption.
    Tang H; Zhang S; Huang T; Zhang J; Xing B
    Environ Sci Technol; 2021 Nov; 55(21):14639-14648. PubMed ID: 34648271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of graphene oxide upon the stripping of oxidized debris: An experimental and molecular dynamics simulation study.
    Yu J; Li W; Zhang D; Huang T; Tang H
    Environ Pollut; 2024 May; 348():123884. PubMed ID: 38548155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the Stripping of Oxide Debris from Graphene Oxide: Evidence from Experimental Analysis and Molecular Simulation.
    Li W; Tang H; Zhang D; Huang T; Xing B
    Environ Sci Technol; 2024 Apr; 58(13):5963-5973. PubMed ID: 38512311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling.
    Wu L; Liu L; Gao B; Muñoz-Carpena R; Zhang M; Chen H; Zhou Z; Wang H
    Langmuir; 2013 Dec; 29(49):15174-81. PubMed ID: 24261814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin-Landau-Verwey-Overbeek Theory.
    Tang H; Zhao Y; Yang X; Liu D; Shao P; Zhu Z; Shan S; Cui F; Xing B
    Environ Sci Technol; 2017 Sep; 51(17):9674-9682. PubMed ID: 28771343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Al2O3 on the aggregation and deposition of graphene oxide.
    Ren X; Li J; Tan X; Shi W; Chen C; Shao D; Wen T; Wang L; Zhao G; Sheng G; Wang X
    Environ Sci Technol; 2014 May; 48(10):5493-500. PubMed ID: 24754235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into the aggregation of graphene oxide in synthetic surface water: Carbonate nanoparticle formation on graphene oxide.
    Zeng Z; Wang Y; Zhou Q; Yang K; Lin D
    Environ Pollut; 2019 Jul; 250():366-374. PubMed ID: 31022642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter.
    Chowdhury I; Mansukhani ND; Guiney LM; Hersam MC; Bouchard D
    Environ Sci Technol; 2015 Sep; 49(18):10886-93. PubMed ID: 26280799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets.
    Chen X; Chen B
    Environ Sci Technol; 2016 Aug; 50(16):8568-77. PubMed ID: 27447025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides.
    Zou Y; Wang X; Chen Z; Yao W; Ai Y; Liu Y; Hayat T; Alsaedi A; Alharbi NS; Wang X
    Environ Pollut; 2016 Dec; 219():107-117. PubMed ID: 27794255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate.
    Du T; Adeleye AS; Keller AA; Wu Z; Han W; Wang Y; Zhang C; Li Y
    Water Res; 2017 Nov; 124():372-380. PubMed ID: 28783493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene Oxides in Water: Correlating Morphology and Surface Chemistry with Aggregation Behavior.
    Jiang Y; Raliya R; Fortner JD; Biswas P
    Environ Sci Technol; 2016 Jul; 50(13):6964-73. PubMed ID: 27248211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between Al
    Liu X; Xu X; Sun J; Duan S; Sun Y; Hayat T; Li J
    Environ Pollut; 2018 Dec; 243(Pt B):1802-1809. PubMed ID: 30408867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry.
    Ye N; Wang Z; Wang S; Fang H; Wang D
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10956-10965. PubMed ID: 29399742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation and destabilization of graphene oxide in reducing aqueous solutions containing sulfide.
    Fu H; Qu X; Chen W; Zhu D
    Environ Toxicol Chem; 2014 Dec; 33(12):2647-53. PubMed ID: 25158152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting Properties of Defective Graphene Oxide: A Molecular Simulation Study.
    Xu K; Zhang J; Hao X; Zhang C; Wei N; Zhang C
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular simulations of conformation change and aggregation of HIV-1 Vpr13-33 on graphene oxide.
    Zeng S; Zhou G; Guo J; Zhou F; Chen J
    Sci Rep; 2016 Apr; 6():24906. PubMed ID: 27097898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.
    Xia T; Fortner JD; Zhu D; Qi Z; Chen W
    Environ Sci Technol; 2015 Oct; 49(19):11468-75. PubMed ID: 26348539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swelling properties of graphite oxides and graphene oxide multilayered materials.
    Iakunkov A; Talyzin AV
    Nanoscale; 2020 Nov; 12(41):21060-21093. PubMed ID: 33084722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.