These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35963435)

  • 1. Reisomerization of retinal represents a molecular switch mediating Na
    Fujisawa T; Kinoue K; Seike R; Kikukawa T; Unno M
    J Biol Chem; 2022 Sep; 298(9):102366. PubMed ID: 35963435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Configurational Changes of Retinal Schiff Base during Membrane Na
    Fujisawa T; Kinoue K; Seike R; Kikukawa T; Unno M
    J Phys Chem Lett; 2024 Feb; 15(7):1993-1998. PubMed ID: 38349321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.
    Kajimoto K; Kikukawa T; Nakashima H; Yamaryo H; Saito Y; Fujisawa T; Demura M; Unno M
    J Phys Chem B; 2017 May; 121(17):4431-4437. PubMed ID: 28421760
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Urui T; Hayashi K; Mizuno M; Inoue K; Kandori H; Mizutani Y
    J Phys Chem B; 2024 Jan; 128(3):744-754. PubMed ID: 38204413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cis-Trans Reisomerization Precedes Reprotonation of the Retinal Chromophore in the Photocycle of Schizorhodopsin 4.
    Hayashi K; Mizuno M; Kandori H; Mizutani Y
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202203149. PubMed ID: 35749139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from
    Nakamizo Y; Fujisawa T; Kikukawa T; Okamura A; Baba H; Unno M
    Phys Chem Chem Phys; 2021 Jan; 23(3):2072-2079. PubMed ID: 33433533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.
    Ono H; Inoue K; Abe-Yoshizumi R; Kandori H
    J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time identification of two substrate-binding intermediates for the light-driven sodium pump rhodopsin.
    Kato T; Tsukamoto T; Demura M; Kikukawa T
    J Biol Chem; 2021; 296():100792. PubMed ID: 34019877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Bond between the Lys-255 Residue and the Main Chain Is Responsible for Stable Retinal Chromophore Binding and Sodium-Pumping Activity of
    Ochiai S; Ichikawa Y; Tomida S; Furutani Y
    Biochemistry; 2023 Jun; 62(12):1849-1857. PubMed ID: 37243673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved FTIR study of light-driven sodium pump rhodopsins.
    Chen HF; Inoue K; Ono H; Abe-Yoshizumi R; Wada A; Kandori H
    Phys Chem Chem Phys; 2018 Jul; 20(26):17694-17704. PubMed ID: 29938283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates.
    Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y
    J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.
    Smith SO; Lugtenburg J; Mathies RA
    J Membr Biol; 1985; 85(2):95-109. PubMed ID: 4009698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein dynamics of a light-driven Na
    Otomo A; Mizuno M; Inoue K; Kandori H; Mizutani Y
    Biophys Physicobiol; 2023 Mar; 20(Supplemental):e201016. PubMed ID: 38362331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual Vibrational Coupling of the Schiff Base in the Retinal Chromophore of Sodium Ion-Pumping Rhodopsins.
    Nakamura T; Shinozaki Y; Otomo A; Urui T; Mizuno M; Abe-Yoshizumi R; Hashimoto M; Kojima K; Sudo Y; Kandori H; Mizutani Y
    J Phys Chem B; 2024 Aug; 128(32):7813-7821. PubMed ID: 39090991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory rhodopsin I photocycle intermediate SRI380 contains 13-cis retinal bound via an unprotonated Schiff base.
    Haupts U; Eisfeld W; Stockburger M; Oesterhelt D
    FEBS Lett; 1994 Dec; 356(1):25-9. PubMed ID: 7988713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Functionally Efficient and Thermally Stable Outward Sodium-Pumping Rhodopsin (BeNaR) from a Thermophilic Bacterium.
    Kurihara M; Thiel V; Takahashi H; Kojima K; Ward DM; Bryant DA; Sakai M; Yoshizawa S; Sudo Y
    Chem Pharm Bull (Tokyo); 2023; 71(2):154-164. PubMed ID: 36724978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2.
    Nishimura N; Mizuno M; Kandori H; Mizutani Y
    J Phys Chem B; 2019 Apr; 123(16):3430-3440. PubMed ID: 30945873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two substates in the O intermediate of the light-driven proton pump archaerhodopsin-2.
    Kouyama T; Ihara K
    Biochim Biophys Acta Biomembr; 2022 Jul; 1864(7):183919. PubMed ID: 35304864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins.
    Li Z; Mizuno M; Ejiri T; Hayashi S; Kandori H; Mizutani Y
    J Phys Chem B; 2023 Nov; 127(46):9873-9886. PubMed ID: 37940604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.