These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35963720)

  • 1. Efficient evaluation of the Breit operator in the Pauli spinor basis.
    Sun S; Ehrman J; Sun Q; Li X
    J Chem Phys; 2022 Aug; 157(6):064112. PubMed ID: 35963720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalar Breit interaction for molecular calculations.
    Sun S; Ehrman J; Zhang T; Sun Q; Dyall KG; Li X
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37139994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Four-Component Dirac-Coulomb-Gaunt Hartree-Fock in the Pauli Spinor Representation.
    Sun S; Stetina TF; Zhang T; Hu H; Valeev EF; Sun Q; Li X
    J Chem Theory Comput; 2021 Jun; 17(6):3388-3402. PubMed ID: 34029469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.
    Shiozaki T
    J Chem Phys; 2013 Mar; 138(11):111101. PubMed ID: 23534619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlated Dirac-Coulomb-Breit multiconfigurational self-consistent-field methods.
    Hoyer CE; Lu L; Hu H; Shumilov KD; Sun S; Knecht S; Li X
    J Chem Phys; 2023 Jan; 158(4):044101. PubMed ID: 36725503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular integrals over the gauge-including atomic orbitals. II. The Breit-Pauli interaction.
    Ishida K
    J Comput Chem; 2003 Nov; 24(15):1874-90. PubMed ID: 14515370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian.
    Zhang C; Cheng L
    J Phys Chem A; 2022 Jul; 126(27):4537-4553. PubMed ID: 35763592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving One-Electron Exact-Two-Component Relativistic Methods with the Dirac-Coulomb-Breit-Parameterized Effective Spin-Orbit Coupling.
    Ehrman J; Martinez-Baez E; Jenkins AJ; Li X
    J Chem Theory Comput; 2023 Sep; 19(17):5785-5790. PubMed ID: 37589436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Breit interaction in an explicitly correlated variational Dirac-Coulomb framework.
    Ferenc D; Jeszenszki P; Mátyus E
    J Chem Phys; 2022 Feb; 156(8):084110. PubMed ID: 35232200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Locality in Molecular Dirac-Coulomb-Breit Calculations: A Perspective.
    Liao C; Lambros E; Sun Q; Dyall KG; Li X
    J Chem Theory Comput; 2023 Dec; 19(24):9009-9017. PubMed ID: 38090757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully relativistic self-consistent field under a magnetic field.
    Reynolds RD; Shiozaki T
    Phys Chem Chem Phys; 2015 Jun; 17(22):14280-3. PubMed ID: 25310527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple algebraic derivation of the Obara-Saika scheme for general two-electron interaction potentials.
    Ahlrichs R
    Phys Chem Chem Phys; 2006 Jul; 8(26):3072-7. PubMed ID: 16804606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient evaluation of three-center Coulomb integrals.
    Samu G; Kállay M
    J Chem Phys; 2017 May; 146(20):204101. PubMed ID: 28571354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale relativistic complete active space self-consistent field with robust convergence.
    Reynolds RD; Yanai T; Shiozaki T
    J Chem Phys; 2018 Jul; 149(1):014106. PubMed ID: 29981535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.