These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35963720)

  • 21. Relativistic two-component geometric approximation of the electron-positron contribution to magnetic properties in terms of Breit-Pauli spinors.
    Zaccari D; Melo JI; Ruiz de Azúa MC; Giribet CG
    J Chem Phys; 2009 Feb; 130(8):084102. PubMed ID: 19256592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical quadrature method using recurrence formulas for two-electron integrals of frequency-dependent Breit interaction.
    Inoue N; Nakajima T
    J Comput Chem; 2023 Oct; 44(26):2073-2085. PubMed ID: 37431641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dirac-Coulomb-Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory.
    Zhang T; Banerjee S; Koulias LN; Valeev EF; DePrince AE; Li X
    J Phys Chem A; 2024 May; 128(17):3408-3418. PubMed ID: 38651293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties.
    Roura PG; Melo JI; Ruiz de Azúa MC; Giribet CG
    J Chem Phys; 2006 Aug; 125(6):64107. PubMed ID: 16942273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Four-component relativistic range-separated density-functional theory: Short-range exchange local-density approximation.
    Paquier J; Toulouse J
    J Chem Phys; 2018 Nov; 149(17):174110. PubMed ID: 30408990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient evaluation of the geometrical first derivatives of three-center Coulomb integrals.
    Samu G; Kállay M
    J Chem Phys; 2018 Sep; 149(12):124101. PubMed ID: 30278674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Libcint: An efficient general integral library for Gaussian basis functions.
    Sun Q
    J Comput Chem; 2015 Aug; 36(22):1664-71. PubMed ID: 26123808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Calculation of Molecular Integrals over London Atomic Orbitals.
    Irons TJP; Zemen J; Teale AM
    J Chem Theory Comput; 2017 Aug; 13(8):3636-3649. PubMed ID: 28692291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variational vs perturbative relativistic energies for small and light atomic and molecular systems.
    Ferenc D; Jeszenszki P; Mátyus E
    J Chem Phys; 2022 Sep; 157(9):094113. PubMed ID: 36075719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling.
    Liu J; Cheng L
    J Chem Phys; 2018 Apr; 148(14):144108. PubMed ID: 29655325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.
    Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K
    J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Hartree-Fock exchange algorithm with Coulomb range separation and long-range density fitting.
    Sun Q
    J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38063221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalized Hartree-Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions.
    Sun S; Williams-Young DB; Stetina TF; Li X
    J Chem Theory Comput; 2019 Jan; 15(1):348-356. PubMed ID: 30485745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAQET: Large-scale two-component relativistic quantum chemistry program package.
    Hayami M; Seino J; Nakajima Y; Nakano M; Ikabata Y; Yoshikawa T; Oyama T; Hiraga K; Hirata S; Nakai H
    J Comput Chem; 2018 Oct; 39(27):2333-2344. PubMed ID: 30238477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully relativistic study of polyatomic closed shell E121X
    Pinheiro AS; Gargano R; Santos PHGD; de Macedo LGM
    J Mol Model; 2021 Aug; 27(9):262. PubMed ID: 34435260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems.
    Anderson RJ; Booth GH
    J Chem Phys; 2020 Nov; 153(18):184103. PubMed ID: 33187430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6.
    Malli GL
    J Chem Phys; 2016 May; 144(19):194301. PubMed ID: 27208943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals.
    Golze D; Benedikter N; Iannuzzi M; Wilhelm J; Hutter J
    J Chem Phys; 2017 Jan; 146(3):034105. PubMed ID: 28109230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct Atomic-Orbital-Based Relativistic Two-Component Linear Response Method for Calculating Excited-State Fine Structures.
    Egidi F; Goings JJ; Frisch MJ; Li X
    J Chem Theory Comput; 2016 Aug; 12(8):3711-8. PubMed ID: 27387787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.