These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35963736)

  • 41. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.
    Xu Y; Petrik NG; Smith RS; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14921-14925. PubMed ID: 27956609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.
    Suzuki Y
    J Chem Phys; 2017 Aug; 147(6):064511. PubMed ID: 28810774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular probe dynamics reveals suppression of ice-like regions in strongly confined supercooled water.
    Banerjee D; Bhat SN; Bhat SV; Leporini D
    PLoS One; 2012; 7(9):e44382. PubMed ID: 23049747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specific heat of hydrated lysozyme, water's contribution to its dynamics, and criteria for glass formation of biomaterials.
    Tombari E; Johari GP
    J Chem Phys; 2013 Sep; 139(10):105102. PubMed ID: 24050369
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase separation in dilute LiCl-H2O solution related to the polyamorphism of liquid water.
    Mishima O
    J Chem Phys; 2007 Jun; 126(24):244507. PubMed ID: 17614564
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glass transition in ultrathin films of amorphous solid water.
    Sepúlveda A; Leon-Gutierrez E; Gonzalez-Silveira M; Rodríguez-Tinoco C; Clavaguera-Mora MT; Rodríguez-Viejo J
    J Chem Phys; 2012 Dec; 137(24):244506. PubMed ID: 23277944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural relaxation of water during rapid cooling from ambient temperatures.
    Kringle L; Kay BD; Kimmel GA
    J Chem Phys; 2023 Aug; 159(6):. PubMed ID: 37551812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural relaxation and crystallization in supercooled water from 170 to 260 K.
    Kringle L; Thornley WA; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-dimensional order parameters and neural network classifiers applied to amorphous ices.
    Faure Beaulieu Z; Deringer VL; Martelli F
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38421068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simple analytical model of water.
    Truskett TM; Dill KA
    Biophys Chem; 2003 Sep; 105(2-3):449-59. PubMed ID: 14499910
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calorimetric and relaxation properties of xylitol-water mixtures.
    Elamin K; Sjöström J; Jansson H; Swenson J
    J Chem Phys; 2012 Mar; 136(10):104508. PubMed ID: 22423849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bulk and interfacial glass transitions of water.
    Bhattacharya D; Payne CN; Sadtchenko V
    J Phys Chem A; 2011 Jun; 115(23):5965-72. PubMed ID: 21401034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glass transition and relaxation processes in supercooled water.
    Cerveny S; Schwartz GA; Bergman R; Swenson J
    Phys Rev Lett; 2004 Dec; 93(24):245702. PubMed ID: 15697826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theory of amorphous ices.
    Limmer DT; Chandler D
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9413-8. PubMed ID: 24858957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spontaneous transformation of water's high-density amorph and a two-stage crystallization to ice VI at 1 GPa: a dielectric study.
    Andersson O; Johari GP
    J Chem Phys; 2004 Jun; 120(24):11662-71. PubMed ID: 15268201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Manifestations of the structural origin of supercooled water's anomalies in the heterogeneous relaxation on the potential energy landscape.
    Mondal A; Ramesh G; Singh RS
    J Chem Phys; 2022 Nov; 157(18):184503. PubMed ID: 36379783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advancing into water's "no man's land": two liquid states?
    Paschek D; Ludwig R
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11699-701. PubMed ID: 25252122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water.
    Banerjee D; Bhat SN; Bhat SV; Leporini D
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11448-53. PubMed ID: 19556546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.