BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35963876)

  • 1. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis.
    Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS
    Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in microfluidic cell separation to enable centrifugation-free, low extracorporeal volume leukapheresis in pediatric patients.
    Iqbal M; Mukhamedshin A; Lezzar DL; Abhishek K; McLennan AL; Lam FW; Shevkoplyas SS
    Blood Transfus; 2023 Nov; 21(6):494-513. PubMed ID: 37146298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of platelets by size in a microfluidic device based on controlled incremental filtration.
    Dinh MTP; Mukhamedshin A; Abhishek K; Lam FW; Gifford SC; Shevkoplyas SS
    Lab Chip; 2024 Feb; 24(4):913-923. PubMed ID: 38263850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved expansion of T cells in culture when isolated with an equipment-free, high-throughput, flow-through microfluidic module versus traditional density gradient centrifugation.
    Strachan BC; Xia H; Vörös E; Gifford SC; Shevkoplyas SS
    Cytotherapy; 2019 Feb; 21(2):234-245. PubMed ID: 30660490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell rosetting enables size-based separation of specific lymphocyte subsets from blood in a microfluidic device.
    Abhishek K; Louis Sam Titus ASC; Dinh MTP; Mukhamedshin A; Mohan C; Gifford SC; Shevkoplyas SS
    Lab Chip; 2023 Mar; 23(7):1804-1815. PubMed ID: 36723024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma.
    Xia H; Strachan BC; Gifford SC; Shevkoplyas SS
    Sci Rep; 2016 Oct; 6():35943. PubMed ID: 27775049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step Microfluidic Purification of White Blood Cells from Whole Blood for Immunophenotyping.
    Kim B; Kim KH; Chang Y; Shin S; Shin EC; Choi S
    Anal Chem; 2019 Oct; 91(20):13230-13236. PubMed ID: 31556985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated leukocyte processing by microfluidic deterministic lateral displacement.
    Civin CI; Ward T; Skelley AM; Gandhi K; Peilun Lee Z; Dosier CR; D'Silva JL; Chen Y; Kim M; Moynihan J; Chen X; Aurich L; Gulnik S; Brittain GC; Recktenwald DJ; Austin RH; Sturm JC
    Cytometry A; 2016 Dec; 89(12):1073-1083. PubMed ID: 27875619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects.
    Tan JKS; Park SY; Leo HL; Kim S
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1431-1437. PubMed ID: 28981424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of platelet white blood cell (WBC) aggregate formation by platelets and WBCs in red blood cell units.
    Keating FK; Fung MK; Schneider DJ
    Transfusion; 2008 Jun; 48(6):1099-105. PubMed ID: 18373501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips.
    Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A
    Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, label-free enrichment of lymphocytes in a closed system using a flow-through microfluidic device.
    Mukhamedshin A; Reddington RC; Dinh MTP; Abhishek K; Iqbal M; Manheim M; Gifford SC; Shevkoplyas SS
    Bioeng Transl Med; 2024 Jan; 9(1):e10602. PubMed ID: 38193116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of intermittent- and continuous-flow cell separators for the collection of autologous peripheral blood progenitor cells in patients with hematologic malignancies.
    Hitzler WE; Wolf S; Runkel S; Kunz-Kostomanolakis M
    Transfusion; 2001 Dec; 41(12):1562-6. PubMed ID: 11778073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples.
    Quinn MM; Jalalian L; Ribeiro S; Ona K; Demirci U; Cedars MI; Rosen MP
    Hum Reprod; 2018 Aug; 33(8):1388-1393. PubMed ID: 30007319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood.
    Zhu S; Wu D; Han Y; Wang C; Xiang N; Ni Z
    Lab Chip; 2020 Jan; 20(2):244-252. PubMed ID: 31833515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the leukapheresis procedure for use in rhesus monkeys (Macaca mulata).
    Ageyama N; Kimikawa M; Eguchi K; Ono F; Shibata H; Yoshikawa Y; Terao K
    J Clin Apher; 2003; 18(1):26-31. PubMed ID: 12717790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.