These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35964025)
21. Improvement on the yield of polyhydroxyalkanotes production from cheese whey by a recombinant Escherichia coli strain using the proton suicide methodology. Pais J; Farinha I; Freitas F; Serafim LS; Martínez V; Martínez JC; Arévalo-Rodríguez M; Auxiliadora Prieto M; Reis MA Enzyme Microb Technol; 2014 Feb; 55():151-8. PubMed ID: 24411458 [TBL] [Abstract][Full Text] [Related]
22. [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering]. Ishchuk OP; Iatsyshyn VIu; Dmytruk KV; Voronovs'kyĭ AIa; Fedorovych DV; Sybirnyĭ AA Ukr Biokhim Zh (1999); 2006; 78(5):63-9. PubMed ID: 17290783 [TBL] [Abstract][Full Text] [Related]
23. Conversion of Deproteinized Cheese Whey to Lactobionate by an Engineered Neurospora crassa Strain F5. Poltorak A; Zhou X; Kasuga T; Xu Y; Fan Z Appl Biochem Biotechnol; 2024 Mar; 196(3):1292-1303. PubMed ID: 37392323 [TBL] [Abstract][Full Text] [Related]
24. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene. Patel MV; T S C Enzyme Microb Technol; 2020 Feb; 133():109455. PubMed ID: 31874696 [TBL] [Abstract][Full Text] [Related]
25. Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Silva AC; Guimarães PM; Teixeira JA; Domingues L J Ind Microbiol Biotechnol; 2010 Sep; 37(9):973-82. PubMed ID: 20535525 [TBL] [Abstract][Full Text] [Related]
26. Porungo cheese whey: a new substrate to produce β-galactosidase. Coelho RJS; Gabardo S; Marim AVC; Bolognesi LS; Pimentel Filho NJ; Ayub MAZ An Acad Bras Cienc; 2023; 95(4):e20200483. PubMed ID: 37991101 [TBL] [Abstract][Full Text] [Related]
27. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Domingues L; Lima N; Teixeira JA Biotechnol Bioeng; 2001 Mar; 72(5):507-14. PubMed ID: 11460240 [TBL] [Abstract][Full Text] [Related]
28. Effect of by-products from the dairy industry as alternative inducers of recombinant β-galactosidase expression. Mobayed FH; Nunes JC; Gennari A; de Andrade BC; Ferreira MLV; Pauli P; Renard G; Chies JM; Volpato G; Volken de Souza CF Biotechnol Lett; 2021 Mar; 43(3):589-599. PubMed ID: 33052483 [TBL] [Abstract][Full Text] [Related]
29. Cheese whey permeate fermentation by Sampaio FC; de Faria JT; da Silva MF; de Souza Oliveira RP; Converti A Environ Technol; 2020 Oct; 41(24):3210-3218. PubMed ID: 30955482 [TBL] [Abstract][Full Text] [Related]
30. Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts. Dmytruk KV; Ruchala J; Fayura LR; Chrzanowski G; Dmytruk OV; Tsyrulnyk AO; Andreieva YA; Fedorovych DV; Motyka OI; Mattanovich D; Marx H; Sibirny AA Microb Cell Fact; 2023 Jul; 22(1):132. PubMed ID: 37474952 [TBL] [Abstract][Full Text] [Related]
31. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices. Kokkiligadda A; Beniwal A; Saini P; Vij S Appl Biochem Biotechnol; 2016 Aug; 179(8):1469-84. PubMed ID: 27059625 [TBL] [Abstract][Full Text] [Related]
32. Valorization of cheese whey to lactobionic acid by a novel strain Pseudomonas fragi and identification of enzyme involved in lactose oxidation. Wu J; Liu P; Zheng Z; Ouyang J Microb Cell Fact; 2022 Sep; 21(1):184. PubMed ID: 36076243 [TBL] [Abstract][Full Text] [Related]
33. Potential use of ricotta cheese whey for the production of lactobionic acid by Pseudomonas taetrolens strains. De Giorgi S; Raddadi N; Fabbri A; Gallina Toschi T; Fava F N Biotechnol; 2018 May; 42():71-76. PubMed ID: 29476816 [TBL] [Abstract][Full Text] [Related]
34. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Álvarez-Cao ME; Rico-Díaz A; Cerdán ME; Becerra M; González-Siso MI Microb Cell Fact; 2018 Sep; 17(1):137. PubMed ID: 30176892 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of Ohstrom AM; Buck AE; Du X; Wee J Front Microbiol; 2023; 14():1208284. PubMed ID: 37614608 [TBL] [Abstract][Full Text] [Related]
36. Heterologous Expression and Characterization of Flavinadenine Dinucleotide Synthetase from Zhou G; Pan Q; Hu Z; Qiu J; Yu Z Protein Pept Lett; 2021; 28(2):229-239. PubMed ID: 32640951 [TBL] [Abstract][Full Text] [Related]
37. Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. Costa CE; Romaní A; Teixeira JA; Domingues L Bioresour Technol; 2022 Sep; 359():127463. PubMed ID: 35710047 [TBL] [Abstract][Full Text] [Related]
38. Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Andrade RP; Melo CN; Genisheva Z; Schwan RF; Duarte WF Food Res Int; 2017 Jan; 91():72-79. PubMed ID: 28290329 [TBL] [Abstract][Full Text] [Related]
39. Potential of "coalho" cheese whey as lactose source for β-galactosidase and ethanol co-production by de Carvalho CT; de Oliveira Júnior SD; de Brito Lima WB; de Medeiros FGM; de Sá Leitão ALO; Dos Santos ES; de Macedo GR; de Sousa Júnior FC Prep Biochem Biotechnol; 2020; 50(9):925-934. PubMed ID: 32496939 [TBL] [Abstract][Full Text] [Related]
40. The activity of beta-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate. Ornelas AP; Silveira WB; Sampaio FC; Passos FM J Appl Microbiol; 2008 Apr; 104(4):1008-13. PubMed ID: 17976174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]