BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35964044)

  • 1. Ethanol yield improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches.
    Yang P; Jiang S; Lu S; Jiang S; Jiang S; Deng Y; Lu J; Wang H; Zhou Y
    Microb Cell Fact; 2022 Aug; 21(1):160. PubMed ID: 35964044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 Approach Constructed Engineered
    Yang P; Jiang S; Jiang S; Lu S; Zheng Z; Chen J; Wu W; Jiang S
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.
    Yu KO; Kim SW; Han SO
    J Biotechnol; 2010 Oct; 150(2):209-14. PubMed ID: 20854852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae.
    Zhang A; Kong Q; Cao L; Chen X
    Lett Appl Microbiol; 2007 Feb; 44(2):212-7. PubMed ID: 17257263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.
    Wei N; Xu H; Kim SR; Jin YS
    Appl Environ Microbiol; 2013 May; 79(10):3193-201. PubMed ID: 23475614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
    Hubmann G; Guillouet S; Nevoigt E
    Appl Environ Microbiol; 2011 Sep; 77(17):5857-67. PubMed ID: 21724879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneously deleting ADH2 and THI3 genes of Saccharomyces cerevisiae for reducing the yield of acetaldehyde and fusel alcohols.
    Wu L; Wen Y; Chen W; Yan T; Tian X; Zhou S
    FEMS Microbiol Lett; 2021 Aug; 368(15):. PubMed ID: 34410369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
    Valadi H; Larsson C; Gustafsson L
    Appl Microbiol Biotechnol; 1998 Oct; 50(4):434-9. PubMed ID: 9830094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae.
    Kong QX; Gu JG; Cao LM; Zhang AL; Chen X; Zhao XM
    Biotechnol Lett; 2006 Dec; 28(24):2033-8. PubMed ID: 17043906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.
    Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE
    Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotolerance improvement of engineered Saccharomyces cerevisiae ERG5 Delta ERG4 Delta ERG3 Delta, molecular mechanism, and its application in corn ethanol production.
    Yang P; Wu W; Chen J; Jiang S; Zheng Z; Deng Y; Lu J; Wang H; Zhou Y; Geng Y; Wang K
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):66. PubMed ID: 37046321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene.
    Eglinton JM; Heinrich AJ; Pollnitz AP; Langridge P; Henschke PA; de Barros Lopes M
    Yeast; 2002 Mar; 19(4):295-301. PubMed ID: 11870853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.
    Turner TL; Lane S; Jayakody LN; Zhang GC; Kim H; Cho W; Jin YS
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31505595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.
    Turner TL; Zhang GC; Kim SR; Subramaniam V; Steffen D; Skory CD; Jang JY; Yu BJ; Jin YS
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.