BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35964044)

  • 41. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.
    Guo ZP; Zhang L; Ding ZY; Shi GY
    Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon catabolite repression: not only for glucose.
    Simpson-Lavy K; Kupiec M
    Curr Genet; 2019 Dec; 65(6):1321-1323. PubMed ID: 31119370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast.
    Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A; Sae-Tang K; Sansatchanon K; Sudying P; Boonchoo K; Tanapongpipat S; Kocharin K; Runguphan W
    FEMS Yeast Res; 2021 Apr; 21(4):. PubMed ID: 33856451
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [
    Guo W; Ai L; Hu D; Chen Y; Geng M; Zheng L; Bai L
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):737-748. PubMed ID: 35234394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Conversion of Glycerol to Ethanol by an Engineered Saccharomyces cerevisiae Strain.
    Khattab SMR; Watanabe T
    Appl Environ Microbiol; 2021 Nov; 87(23):e0026821. PubMed ID: 34524902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short-term response of different Saccharomyces cerevisiae strains to hyperosmotic stress caused by inoculation in grape must: RT-qPCR study and metabolite analysis.
    Noti O; Vaudano E; Pessione E; Garcia-Moruno E
    Food Microbiol; 2015 Dec; 52():49-58. PubMed ID: 26338116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production.
    Cordier H; Mendes F; Vasconcelos I; François JM
    Metab Eng; 2007 Jul; 9(4):364-78. PubMed ID: 17500021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation.
    Milanovic V; Ciani M; Oro L; Comitini F
    Microb Cell Fact; 2012 Feb; 11():18. PubMed ID: 22305374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production].
    Zhao L; Wang J; Zhou J; Liu L; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):50-8. PubMed ID: 21465789
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains.
    Maleki F; Changizian M; Zolfaghari N; Rajaei S; Noghabi KA; Zahiri HS
    Sci Rep; 2021 Jul; 11(1):13731. PubMed ID: 34215768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptomic and proteomic effects of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3"Me) treatment on ethanol-stressed Saccharomyces cerevisiae cells.
    Chen Y; Cheng L; Zhang X; Cao J; Wu Z; Zheng X
    Food Res Int; 2019 May; 119():67-75. PubMed ID: 30884702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.
    Bro C; Regenberg B; Förster J; Nielsen J
    Metab Eng; 2006 Mar; 8(2):102-11. PubMed ID: 16289778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress.
    Luyten K; Albertyn J; Skibbe WF; Prior BA; Ramos J; Thevelein JM; Hohmann S
    EMBO J; 1995 Apr; 14(7):1360-71. PubMed ID: 7729414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production.
    Ismail KS; Sakamoto T; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1039-50. PubMed ID: 23748446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati.
    Yaacob N; Mohamad Ali MS; Salleh AB; Abdul Rahman NA
    PeerJ; 2016; 4():e1751. PubMed ID: 26989608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.