These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35964150)

  • 21. Chemical named entities recognition: a review on approaches and applications.
    Eltyeb S; Salim N
    J Cheminform; 2014; 6():17. PubMed ID: 24834132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF.
    An Y; Xia X; Chen X; Wu FX; Wang J
    Artif Intell Med; 2022 May; 127():102282. PubMed ID: 35430042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CHEMDNER system with mixed conditional random fields and multi-scale word clustering.
    Lu Y; Ji D; Yao X; Wei X; Liang X
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S4. PubMed ID: 25810775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cascaded classifiers for confidence-based chemical named entity recognition.
    Corbett P; Copestake A
    BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S4. PubMed ID: 19025690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks.
    Wei Q; Chen T; Xu R; He Y; Gui L
    Database (Oxford); 2016; 2016():. PubMed ID: 27777244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving chemical entity recognition through h-index based semantic similarity.
    Lamurias A; Ferreira JD; Couto FM
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S13. PubMed ID: 25810770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adversarial training based lattice LSTM for Chinese clinical named entity recognition.
    Zhao S; Cai Z; Chen H; Wang Y; Liu F; Liu A
    J Biomed Inform; 2019 Nov; 99():103290. PubMed ID: 31557528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical Context-Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation.
    Afzal M; Alam F; Malik KM; Malik GM
    J Med Internet Res; 2020 Oct; 22(10):e19810. PubMed ID: 33095174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization.
    Dai HJ; Lai PT; Chang YC; Tsai RT
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S14. PubMed ID: 25810771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study.
    Skeppstedt M; Kvist M; Nilsson GH; Dalianis H
    J Biomed Inform; 2014 Jun; 49():148-58. PubMed ID: 24508177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CHEMDNER: The drugs and chemical names extraction challenge.
    Krallinger M; Leitner F; Rabal O; Vazquez M; Oyarzabal J; Valencia A
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S1. PubMed ID: 25810766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenonizer: A Fine-Grained Phenotypic Named Entity Recognizer for Chinese Clinical Texts.
    Zou Q; Yang K; Shu Z; Chang K; Zheng Q; Zheng Y; Lu K; Xu N; Tian H; Li X; Yang Y; Zhou Y; Yu H; Zhang X; Xia J; Zhu Q; Poon J; Poon S; Zhang R; Li X; Zhou X
    Biomed Res Int; 2022; 2022():3524090. PubMed ID: 35342762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CNEr: A toolkit for exploring extreme noncoding conservation.
    Tan G; Polychronopoulos D; Lenhard B
    PLoS Comput Biol; 2019 Aug; 15(8):e1006940. PubMed ID: 31449516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.
    Han X; Kim JJ; Kwoh CK
    J Biomed Semantics; 2016; 7():22. PubMed ID: 27127603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A two-stage deep learning approach for extracting entities and relationships from medical texts.
    Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P
    J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CollaboNet: collaboration of deep neural networks for biomedical named entity recognition.
    Yoon W; So CH; Lee J; Kang J
    BMC Bioinformatics; 2019 May; 20(Suppl 10):249. PubMed ID: 31138109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical shared transfer learning for biomedical named entity recognition.
    Chai Z; Jin H; Shi S; Zhan S; Zhuo L; Yang Y
    BMC Bioinformatics; 2022 Jan; 23(1):8. PubMed ID: 34983362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.
    Marucci-Wellman HR; Corns HL; Lehto MR
    Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.