These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35964758)

  • 1. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb. - is this herb a global threat?
    Rewicz A; Myśliwy M; Rewicz T; Adamowski W; Kolanowska M
    Sci Total Environ; 2022 Dec; 850():157959. PubMed ID: 35964758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligustrum lucidum W. T. Aiton (broad-leaf privet) demonstrates climatic niche shifts during global-scale invasion.
    Dreyer JBB; Higuchi P; Silva AC
    Sci Rep; 2019 Mar; 9(1):3813. PubMed ID: 30846781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conclusions about niche expansion in introduced Impatiens walleriana populations depend on method of analysis.
    Mandle L; Warren DL; Hoffmann MH; Peterson AT; Schmitt J; von Wettberg EJ
    PLoS One; 2010 Dec; 5(12):e15297. PubMed ID: 21206912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the current and projected distribution of Brazilian peppertree Schinus terebinthifolia Raddi (Anacardiaceae) in the Americas.
    Santos RS; Alencar JBR; Gallo R
    Braz J Biol; 2024; 84():e279769. PubMed ID: 38922189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change.
    Wani IA; Khan S; Verma S; Al-Misned FA; Shafik HM; El-Serehy HA
    Sci Rep; 2022 Aug; 12(1):13205. PubMed ID: 35915126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling.
    Parveen S; Kaur S; Baishya R; Goel S
    Environ Monit Assess; 2022 Oct; 194(12):853. PubMed ID: 36203117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential distribution of selected invasive alien plants under current and future climate change scenarios in South Africa.
    Mengistu AG; Tesfuhuney WA; Woyessa YE; Steyn AS
    Heliyon; 2023 Sep; 9(9):e19867. PubMed ID: 37809438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive leaf size traits dataset for seven plant species from digitised herbarium specimen images covering more than two centuries.
    Kommineni VK; Tautenhahn S; Baddam P; Gaikwad J; Wieczorek B; Triki A; Kattge J
    Biodivers Data J; 2021; 9():e69806. PubMed ID: 34316273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change.
    Wan JZ; Wang CJ; Tan JF; Yu FH
    Ecol Evol; 2017 Mar; 7(5):1541-1552. PubMed ID: 28261463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of global warming on the potential distribution of a holoparasitic plant (Phelypaea tournefortii): both climate and host distribution matter.
    Piwowarczyk R; Kolanowska M
    Sci Rep; 2023 Jul; 13(1):10741. PubMed ID: 37400559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed morphology and sculpture of invasive
    Rewicz A; Myśliwy M; Adamowski W; Podlasiński M; Bomanowska A
    PeerJ; 2020; 8():e10156. PubMed ID: 33240597
    [No Abstract]   [Full Text] [Related]  

  • 13.
    Gadagkar SR; Baeza JA; Buss K; Johnson N
    PeerJ; 2023; 11():e16328. PubMed ID: 37901463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollination biology of Impatiens capensis Meerb. in non-native range.
    Rewicz A; Monzalvo R; Myśliwy M; Tończyk G; Desiderato A; Ruchisansakun S; Rewicz T
    PLoS One; 2024; 19(6):e0302283. PubMed ID: 38900825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae).
    Kolanowska M
    PLoS One; 2013; 8(10):e77352. PubMed ID: 24143222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Past, present, and future geographic range of the relict Mediterranean and Macaronesian
    Salvà-Catarineu M; Romo A; Mazur M; Zielińska M; Minissale P; Dönmez AA; Boratyńska K; Boratyński A
    Ecol Evol; 2021 May; 11(10):5075-5095. PubMed ID: 34025993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can global warming be beneficial for Arctic-alpine orchid species? Outcomes from ecological niche modeling for Chamorchis alpina (L.) Rich. (Orchidaceae).
    Kolanowska M; Rewicz A; Nowak S
    Sci Total Environ; 2024 Sep; 943():173616. PubMed ID: 38844225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forest herb species with similar European geographic ranges may respond differently to climate change.
    Puchałka R; Paź-Dyderska S; Dylewski Ł; Czortek P; Vítková M; Sádlo J; Klisz M; Koniakin S; Čarni A; Rašomavičius V; De Sanctis M; Dyderski MK
    Sci Total Environ; 2023 Dec; 905():167303. PubMed ID: 37742951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of past defaunation on ranges, niches, and future biodiversity forecasts.
    Sales LP; Galetti M; Carnaval A; Monsarrat S; Svenning JC; Pires MM
    Glob Chang Biol; 2022 Jun; 28(11):3683-3693. PubMed ID: 35246902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.