These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35965014)

  • 1. Reconstitution and biochemical characterization of the RNA-guided helicase-nuclease protein Cas3 from type I-A CRISPR-Cas system.
    Hu C; Ke A
    Methods Enzymol; 2022; 673():405-424. PubMed ID: 35965014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tryptophan 'Gate' in the CRISPR-Cas3 Nuclease Controls ssDNA Entry into the Nuclease Site, That When Removed Results in Nuclease Hyperactivity.
    He L; Matošević ZJ; Mitić D; Markulin D; Killelea T; Matković M; Bertoša B; Ivančić-Baće I; Bolt EL
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools.
    Hu C; Ni D; Nam KH; Majumdar S; McLean J; Stahlberg H; Terns MP; Ke A
    Mol Cell; 2022 Aug; 82(15):2754-2768.e5. PubMed ID: 35835111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria.
    Govindarajan S; Borges A; Karambelkar S; Bondy-Denomy J
    J Bacteriol; 2022 May; 204(5):e0010522. PubMed ID: 35389256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps.
    Loeff L; Brouns SJJ; Joo C
    Mol Cell; 2018 May; 70(3):385-394.e3. PubMed ID: 29706536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure basis for RNA-guided DNA degradation by Cascade and Cas3.
    Xiao Y; Luo M; Dolan AE; Liao M; Ke A
    Science; 2018 Jul; 361(6397):. PubMed ID: 29880725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase.
    Musharova O; Medvedeva S; Klimuk E; Guzman NM; Titova D; Zgoda V; Shiriaeva A; Semenova E; Severinov K; Savitskaya E
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34035168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cas3-stimulated runaway replication of modified ColE1 plasmids in Escherichia coli is temperature dependent.
    Radovčić M; Čulo A; Ivančić-Baće I
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31095294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.
    Huo Y; Nam KH; Ding F; Lee H; Wu L; Xiao Y; Farchione MD; Zhou S; Rajashankar K; Kurinov I; Zhang R; Ke A
    Nat Struct Mol Biol; 2014 Sep; 21(9):771-7. PubMed ID: 25132177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems.
    Xiao Y; Ke A
    Methods Enzymol; 2019; 616():27-41. PubMed ID: 30691647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.
    Redding S; Sternberg SH; Marshall M; Gibb B; Bhat P; Guegler CK; Wiedenheft B; Doudna JA; Greene EC
    Cell; 2015 Nov; 163(4):854-65. PubMed ID: 26522594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas3 nuclease-helicase activity assays.
    Sinkunas T; Gasiunas G; Siksnys V
    Methods Mol Biol; 2015; 1311():277-91. PubMed ID: 25981480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
    Hochstrasser ML; Taylor DW; Bhat P; Guegler CK; Sternberg SH; Nogales E; Doudna JA
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6618-23. PubMed ID: 24748111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3.
    Hou Z; Hu C; Ke A; Zhang Y
    Curr Protoc; 2022 Feb; 2(2):e361. PubMed ID: 35129865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering.
    Shangguan Q; White MF
    Microbiology (Reading); 2023 Aug; 169(8):. PubMed ID: 37526970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of Cas3 activation in type I-C CRISPR-Cas system.
    Kim DY; Lee SY; Ha HJ; Park HH
    Nucleic Acids Res; 2024 Sep; 52(17):10563-10574. PubMed ID: 39180405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3.
    Yoshimi K; Takeshita K; Kodera N; Shibumura S; Yamauchi Y; Omatsu M; Umeda K; Kunihiro Y; Yamamoto M; Mashimo T
    Nat Commun; 2022 Aug; 13(1):4917. PubMed ID: 36042215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications.
    Hu C; Myers MT; Zhou X; Hou Z; Lozen ML; Nam KH; Zhang Y; Ke A
    Mol Cell; 2024 Feb; 84(3):463-475.e5. PubMed ID: 38242128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas.
    Dolan AE; Hou Z; Xiao Y; Gramelspacher MJ; Heo J; Howden SE; Freddolino PL; Ke A; Zhang Y
    Mol Cell; 2019 Jun; 74(5):936-950.e5. PubMed ID: 30975459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.