These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 35965018)
1. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins. Jarmoskaite I; Helmers AE; Russell R Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018 [TBL] [Abstract][Full Text] [Related]
2. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. Jarmoskaite I; Tijerina P; Russell R J Biol Chem; 2021; 296():100132. PubMed ID: 33262215 [TBL] [Abstract][Full Text] [Related]
3. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Jarmoskaite I; Bhaskaran H; Seifert S; Russell R Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866 [TBL] [Abstract][Full Text] [Related]
5. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins. Sinan S; Yuan X; Russell R J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649 [TBL] [Abstract][Full Text] [Related]
6. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Tijerina P; Bhaskaran H; Russell R Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Hilbert M; Karow AR; Klostermeier D Biol Chem; 2009 Dec; 390(12):1237-50. PubMed ID: 19747077 [TBL] [Abstract][Full Text] [Related]
8. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008 [TBL] [Abstract][Full Text] [Related]
9. DEAD-box proteins as RNA helicases and chaperones. Jarmoskaite I; Russell R Wiley Interdiscip Rev RNA; 2011; 2(1):135-52. PubMed ID: 21297876 [TBL] [Abstract][Full Text] [Related]
10. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Henn A; Cao W; Licciardello N; Heitkamp SE; Hackney DD; De La Cruz EM Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4046-50. PubMed ID: 20160110 [TBL] [Abstract][Full Text] [Related]
11. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717 [TBL] [Abstract][Full Text] [Related]
12. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates. Busa VF; Rector MJ; Russell R Biochemistry; 2017 Jul; 56(28):3571-3578. PubMed ID: 28650145 [TBL] [Abstract][Full Text] [Related]
13. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Liu F; Putnam A; Jankowsky E Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20209-14. PubMed ID: 19088201 [TBL] [Abstract][Full Text] [Related]
14. Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy. Henn A; Medalia O; Shi SP; Steinberg M; Franceschi F; Sagi I Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5007-12. PubMed ID: 11296244 [TBL] [Abstract][Full Text] [Related]
15. ATP utilization and RNA conformational rearrangement by DEAD-box proteins. Henn A; Bradley MJ; De La Cruz EM Annu Rev Biophys; 2012; 41():247-67. PubMed ID: 22404686 [TBL] [Abstract][Full Text] [Related]
16. The DEAD box helicase YxiN maintains a closed conformation during ATP hydrolysis. Aregger R; Klostermeier D Biochemistry; 2009 Nov; 48(45):10679-81. PubMed ID: 19839642 [TBL] [Abstract][Full Text] [Related]
17. A conformational change in the helicase core is necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN. Karow AR; Klostermeier D Nucleic Acids Res; 2009 Jul; 37(13):4464-71. PubMed ID: 19474341 [TBL] [Abstract][Full Text] [Related]
18. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564 [TBL] [Abstract][Full Text] [Related]
19. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding. Rudolph MG; Klostermeier D Biol Chem; 2015 Aug; 396(8):849-65. PubMed ID: 25720120 [TBL] [Abstract][Full Text] [Related]
20. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]