BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35965036)

  • 1. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity.
    Mitchell GS; Baker TL
    Handb Clin Neurol; 2022; 188():409-432. PubMed ID: 35965036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivity-induced phrenic motor facilitation requires PKCζ activity within phrenic motor neurons.
    Baertsch NA; Marciante AB; Mitchell GS; Baker TL
    J Neurophysiol; 2024 Jun; 131(6):1188-1199. PubMed ID: 38691529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury.
    Gonzalez-Rothi EJ; Allen LL; Seven YB; Ciesla MC; Holland AE; Santiago JV; Mitchell GS
    Exp Neurol; 2024 Aug; 378():114808. PubMed ID: 38750949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Enhanced Phrenic Long-Term Facilitation in
    Nichols NL; Satriotomo I; Allen LL; Grebe AM; Mitchell GS
    J Neurosci; 2017 Jun; 37(24):5834-5845. PubMed ID: 28500219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity.
    Tadjalli A; Seven YB; Perim RR; Mitchell GS
    J Neuroinflammation; 2021 Jan; 18(1):28. PubMed ID: 33468163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
    Braegelmann KM; Streeter KA; Fields DP; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):225-234. PubMed ID: 27456270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BDNF-induced phrenic motor facilitation shifts from PKCθ to ERK dependence with mild systemic inflammation.
    Agosto-Marlin IM; Nikodemova M; Dale EA; Mitchell GS
    J Neurophysiol; 2023 Feb; 129(2):455-464. PubMed ID: 36695529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.
    Huxtable AG; Smith SM; Peterson TJ; Watters JJ; Mitchell GS
    J Neurosci; 2015 Apr; 35(17):6871-80. PubMed ID: 25926462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinoic acid receptor alpha activation is necessary and sufficient for plasticity induced by recurrent central apnea.
    Braegelmann KM; Meza A; Agbeh AE; Fields DP; Baker TL
    J Appl Physiol (1985); 2021 Mar; 130(3):836-845. PubMed ID: 33411644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nongenomic Actions of 17-β Estradiol Restore Respiratory Neuroplasticity in Young Ovariectomized Female Rats.
    Dougherty BJ; Kopp ES; Watters JJ
    J Neurosci; 2017 Jul; 37(28):6648-6660. PubMed ID: 28592693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute morphine blocks spinal respiratory motor plasticity via long-latency mechanisms that require toll-like receptor 4 signalling.
    Tadjalli A; Seven YB; Sharma A; McCurdy CR; Bolser DC; Levitt ES; Mitchell GS
    J Physiol; 2021 Aug; 599(15):3771-3797. PubMed ID: 34142718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury.
    Lovett-Barr MR; Satriotomo I; Muir GD; Wilkerson JE; Hoffman MS; Vinit S; Mitchell GS
    J Neurosci; 2012 Mar; 32(11):3591-600. PubMed ID: 22423083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal metaplasticity in respiratory motor control.
    Fields DP; Mitchell GS
    Front Neural Circuits; 2015; 9():2. PubMed ID: 25717292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.
    Baertsch NA; Baker-Herman TL
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(8):R700-7. PubMed ID: 25673781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury.
    Gonzalez-Rothi EJ; Lee KZ
    Exp Neurol; 2021 Aug; 342():113751. PubMed ID: 33974878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute intermittent hypercapnic-hypoxia elicits central neural respiratory motor plasticity in humans.
    Welch JF; Nair J; Argento PJ; Mitchell GS; Fox EJ
    J Physiol; 2022 May; 600(10):2515-2533. PubMed ID: 35348218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased spinal adenosine impairs phrenic long-term facilitation in aging rats.
    Marciante AB; Mitchell GS
    J Appl Physiol (1985); 2023 Jun; 134(6):1537-1548. PubMed ID: 37167263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.
    Nichols NL; Satriotomo I; Harrigan DJ; Mitchell GS
    Exp Neurol; 2015 Nov; 273():138-50. PubMed ID: 26287750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.
    Baertsch NA; Baker TL
    J Neurophysiol; 2017 Nov; 118(5):2702-2710. PubMed ID: 28814632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cervical spinal injury compromises caudal spinal tissue oxygenation and undermines acute intermittent hypoxia-induced phrenic long-term facilitation.
    Perim RR; Gonzalez-Rothi EJ; Mitchell GS
    Exp Neurol; 2021 Aug; 342():113726. PubMed ID: 33915165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.