BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35965036)

  • 21. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spinal plasticity following intermittent hypoxia: implications for spinal injury.
    Dale-Nagle EA; Hoffman MS; MacFarlane PM; Satriotomo I; Lovett-Barr MR; Vinit S; Mitchell GS
    Ann N Y Acad Sci; 2010 Jun; 1198():252-9. PubMed ID: 20536940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mild inflammation impairs acute intermittent hypoxia-induced phrenic long-term facilitation by a spinal adenosine-dependent mechanism.
    Marciante AB; Mitchell GS
    J Neurophysiol; 2023 Apr; 129(4):799-806. PubMed ID: 36883762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.
    Strey KA; Nichols NL; Baertsch NA; Broytman O; Baker-Herman TL
    J Neurosci; 2012 Nov; 32(46):16510-20. PubMed ID: 23152633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury.
    Lee KZ; Sandhu MS; Dougherty BJ; Reier PJ; Fuller DD
    Exp Neurol; 2015 Jan; 263():314-24. PubMed ID: 25448009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circulatory control of phrenic motor plasticity.
    Perim RR; Mitchell GS
    Respir Physiol Neurobiol; 2019 Jul; 265():19-23. PubMed ID: 30639504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.
    Streeter KA; Baker-Herman TL
    J Appl Physiol (1985); 2014 Oct; 117(7):682-93. PubMed ID: 25103979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory plasticity following intermittent hypoxia: roles of protein phosphatases and reactive oxygen species.
    Wilkerson JE; Macfarlane PM; Hoffman MS; Mitchell GS
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1269-72. PubMed ID: 17956327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury.
    Golder FJ; Mitchell GS
    J Neurosci; 2005 Mar; 25(11):2925-32. PubMed ID: 15772352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
    Huxtable AG; Kopp E; Dougherty BJ; Watters JJ; Mitchell GS
    Respir Physiol Neurobiol; 2018 Oct; 256():21-28. PubMed ID: 29233741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivity-induced phrenic and hypoglossal motor facilitation are differentially expressed following intermittent vs. sustained neural apnea.
    Baertsch NA; Baker-Herman TL
    J Appl Physiol (1985); 2013 May; 114(10):1388-95. PubMed ID: 23493368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.
    Streeter KA; Baker-Herman TL
    Exp Neurol; 2014 Jun; 256():46-56. PubMed ID: 24681155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinal activation of protein kinase C elicits phrenic motor facilitation.
    Devinney MJ; Mitchell GS
    Respir Physiol Neurobiol; 2018 Oct; 256():36-42. PubMed ID: 29081358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
    Agosto-Marlin IM; Nichols NL; Mitchell GS
    J Neurophysiol; 2018 Jun; 119(6):2176-2185. PubMed ID: 29513151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
    Hocker AD; Huxtable AG
    J Appl Physiol (1985); 2018 Aug; 125(2):504-512. PubMed ID: 29565772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cervical spinal 5-HT
    Tadjalli A; Mitchell GS
    J Appl Physiol (1985); 2019 Aug; 127(2):432-443. PubMed ID: 31219768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.
    Hormigo KM; Zholudeva LV; Spruance VM; Marchenko V; Cote MP; Vinit S; Giszter S; Bezdudnaya T; Lane MA
    Exp Neurol; 2017 Jan; 287(Pt 2):276-287. PubMed ID: 27582085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function.
    Dale EA; Ben Mabrouk F; Mitchell GS
    Physiology (Bethesda); 2014 Jan; 29(1):39-48. PubMed ID: 24382870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system.
    Kelly MN; Smith DN; Sunshine MD; Ross A; Zhang X; Gumz ML; Esser KA; Mitchell GS
    Am J Physiol Regul Integr Comp Physiol; 2020 Jun; 318(6):R1058-R1067. PubMed ID: 32348679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiratory neuroplasticity - Overview, significance and future directions.
    Fuller DD; Mitchell GS
    Exp Neurol; 2017 Jan; 287(Pt 2):144-152. PubMed ID: 27208699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.