BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35965238)

  • 21. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine.
    Demir Duman F; Forgan RS
    J Mater Chem B; 2021 Apr; 9(16):3423-3449. PubMed ID: 33909734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications.
    Cai G; Yan P; Zhang L; Zhou HC; Jiang HL
    Chem Rev; 2021 Oct; 121(20):12278-12326. PubMed ID: 34280313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications.
    Osterrieth JWM; Fairen-Jimenez D
    Biotechnol J; 2021 Feb; 16(2):e2000005. PubMed ID: 32330358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications.
    Begum S; Hassan Z; Bräse S; Wöll C; Tsotsalas M
    Acc Chem Res; 2019 Jun; 52(6):1598-1610. PubMed ID: 30977634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation.
    Tang S; Wang Y; He P; Wang Y; Wei G
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent development of metal-organic framework nanocomposites for biomedical applications.
    Ge X; Wong R; Anisa A; Ma S
    Biomaterials; 2022 Feb; 281():121322. PubMed ID: 34959029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks.
    Deng Y; Wang Y; Xiao X; Saucedo BJ; Zhu Z; Xie M; Xu X; Yao K; Zhai Y; Zhang Z; Chen J
    Small; 2022 Sep; 18(38):e2202928. PubMed ID: 35986438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances in the Application and Mechanism of Carbon Dots/Metal-Organic Frameworks Hybrids in Photocatalysis and the Detection of Environmental Pollutants.
    Li Y; Jiang XX; Xie JX; Lv YK
    Chem Asian J; 2022 Jul; 17(13):e202200283. PubMed ID: 35460188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing.
    Zhou J; Li Y; Wang W; Tan X; Lu Z; Han H
    Biosens Bioelectron; 2020 Sep; 164():112332. PubMed ID: 32553355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale metal-organic frameworks for tumor phototherapy.
    Huang X; Sun X; Wang W; Shen Q; Shen Q; Tang X; Shao J
    J Mater Chem B; 2021 May; 9(18):3756-3777. PubMed ID: 33870980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function.
    Sher H; Ali H; Rashid MH; Iftikhar F; Saif-Ur-Rehman ; Nawaz MS; Khan WS
    Protein Pept Lett; 2019; 26(9):636-647. PubMed ID: 31208305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal organic framework-based Janus nanomaterials: rational design, strategic fabrication and emerging applications.
    Tripathy SP; Subudhi S; Ray A; Behera P; Parida K
    Dalton Trans; 2022 Apr; 51(14):5352-5366. PubMed ID: 35289823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale metal-organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms.
    Carrillo-Carrión C
    Anal Bioanal Chem; 2020 Jan; 412(1):37-54. PubMed ID: 31734711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review.
    Li L; Qi Z; Han S; Li X; Liu B; Liu Y
    Mini Rev Med Chem; 2022; 22(20):2564-2580. PubMed ID: 35362373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designs of metal-organic framework nanoparticles for protein delivery.
    Kai M; Wang S; Gao W; Zhang L
    J Control Release; 2023 Sep; 361():178-190. PubMed ID: 37532146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The function of metal-organic frameworks in the application of MOF-based composites.
    Chen L; Zhang X; Cheng X; Xie Z; Kuang Q; Zheng L
    Nanoscale Adv; 2020 Jul; 2(7):2628-2647. PubMed ID: 36132385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H
    Li C; Wu R; Zou J; Zhang T; Zhang S; Zhang Z; Hu X; Yan Y; Ling X
    Biosens Bioelectron; 2018 Sep; 116():81-88. PubMed ID: 29860090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency.
    Yang Q; Liu W; Wang B; Zhang W; Zeng X; Zhang C; Qin Y; Sun X; Wu T; Liu J; Huo F; Lu J
    Nat Commun; 2017 Feb; 8():14429. PubMed ID: 28195131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances.
    Zhou J; Li Y; Wang L; Xie Z
    J Mater Chem B; 2021 Sep; 9(37):7760-7770. PubMed ID: 34586151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth.
    Falcaro P; Okada K; Hara T; Ikigaki K; Tokudome Y; Thornton AW; Hill AJ; Williams T; Doonan C; Takahashi M
    Nat Mater; 2017 Mar; 16(3):342-348. PubMed ID: 27918565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.