These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35965311)

  • 1. Evaluating surface EMG control of motorized wheelchairs for amyotrophic lateral sclerosis patients.
    Manero AC; McLinden SL; Sparkman J; Oskarsson B
    J Neuroeng Rehabil; 2022 Aug; 19(1):88. PubMed ID: 35965311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair use by patients with amyotrophic lateral sclerosis: a survey of user characteristics and selection preferences.
    Trail M; Nelson N; Van JN; Appel SH; Lai EC
    Arch Phys Med Rehabil; 2001 Jan; 82(1):98-102. PubMed ID: 11239293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a wheelchair virtual driving environment: trials with subjects with traumatic brain injury.
    Spaeth DM; Mahajan H; Karmarkar A; Collins D; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2008 May; 89(5):996-1003. PubMed ID: 18452751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power Wheelchair Use in Persons With Amyotrophic Lateral Sclerosis: Changes Over Time.
    Ward AL; Hammond S; Holsten S; Bravver E; Brooks BR
    Assist Technol; 2015; 27(4):238-45. PubMed ID: 26691564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steer by ear: Myoelectric auricular control of powered wheelchairs for individuals with spinal cord injury.
    Schmalfuß L; Rupp R; Tuga MR; Kogut A; Hewitt M; Meincke J; Klinker F; Duttenhoefer W; Eck U; Mikut R; Reischl M; Liebetanz D
    Restor Neurol Neurosci; 2016; 34(1):79-95. PubMed ID: 26599475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in outcomes between the JoyBar control and standard wheelchair joystick control on two maneuverability tasks: a pilot study.
    Smith EM; Fuller D; Mahmood H; Miller WC
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):523-526. PubMed ID: 28792791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a smart wheelchair as a gaming device for floor-projected games: a mixed-reality environment for training powered-wheelchair driving skills.
    Secoli R; Zondervan D; Reinkensmeyer D
    Stud Health Technol Inform; 2012; 173():450-6. PubMed ID: 22357035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robotic wheelchair trainer: design overview and a feasibility study.
    Marchal-Crespo L; Furumasu J; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2010 Aug; 7():40. PubMed ID: 20707886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evaluation of an alternative wheelchair control system for dexterity disabilities.
    Oliver S; Khan A
    Healthc Technol Lett; 2019 Aug; 6(4):109-114. PubMed ID: 31531225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye-controlled, power wheelchair performs well for ALS patients.
    Elliott MA; Malvar H; Maassel LL; Campbell J; Kulkarni H; Spiridonova I; Sophy N; Beavers J; Paradiso A; Needham C; Rifley J; Duffield M; Crawford J; Wood B; Cox EJ; Scanlan JM
    Muscle Nerve; 2019 Nov; 60(5):513-519. PubMed ID: 31397910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric powered wheelchair control using user-independent classification methods based on surface electromyography signals.
    Iqbal H; Zheng J; Chai R; Chandrasekaran S
    Med Biol Eng Comput; 2024 Jan; 62(1):167-182. PubMed ID: 37749368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscular effort in multiple sclerosis patients during powered wheelchair manoeuvres.
    Jonkers I; Nuyens G; Seghers J; Nuttin M; Spaepen A
    Clin Biomech (Bristol, Avon); 2004 Nov; 19(9):929-38. PubMed ID: 15475125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of virtual and real electric powered wheelchair driving using a position sensing joystick and an isometric joystick.
    Cooper RA; Spaeth DM; Jones DK; Boninger ML; Fitzgerald SG; Guo S
    Med Eng Phys; 2002 Dec; 24(10):703-8. PubMed ID: 12460730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Braking electric-powered wheelchairs: effect of braking method, seatbelt, and legrests.
    Cooper RA; Dvorznak MJ; O'Connor TJ; Boninger ML; Jones DK
    Arch Phys Med Rehabil; 1998 Oct; 79(10):1244-9. PubMed ID: 9779678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimanual gliding control for indoor power wheelchair driving.
    Lin YH; Kuo CH; Ng HH; Liu WY; Lien HY
    J Rehabil Res Dev; 2013; 50(3):357-66. PubMed ID: 23881762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Physical performance in patients with amyotrophic lateral sclerosis and its relationship with wheelchairs and walking aids use].
    Gatti MA; Broggi MS; Rivas ME; Muzio D; Bonetto M; Alessandro L
    Rehabilitacion (Madr); 2022; 56(4):279-283. PubMed ID: 35637028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joystick-controlled video console game practice for developing power wheelchairs users' indoor driving skills.
    Huang WP; Wang CC; Hung JH; Chien KC; Liu WY; Cheng CH; Ng HH; Lin YH
    J Phys Ther Sci; 2015 Feb; 27(2):495-8. PubMed ID: 25729200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review.
    Kaur A
    J Med Eng Technol; 2021 Jan; 45(1):61-74. PubMed ID: 33302770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SenseJoy, a pluggable solution for assessing user behavior during powered wheelchair driving tasks.
    Rabreau O; Chevallier S; Chassagne L; Monacelli E
    J Neuroeng Rehabil; 2019 Nov; 16(1):134. PubMed ID: 31694645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.