These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35965449)
1. Local adaptation to seasonal cues at the fronts of two parallel, climate-induced butterfly range expansions. Ittonen M; Hagelin A; Wiklund C; Gotthard K Ecol Lett; 2022 Sep; 25(9):2022-2033. PubMed ID: 35965449 [TBL] [Abstract][Full Text] [Related]
2. Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Lindestad O; Wheat CW; Nylin S; Gotthard K Ecology; 2019 Jan; 100(1):e02550. PubMed ID: 30375642 [TBL] [Abstract][Full Text] [Related]
3. Herbivore seasonality responds to conflicting cues: Untangling the effects of host, temperature, and photoperiod. Abarca M PLoS One; 2019; 14(9):e0222227. PubMed ID: 31487319 [TBL] [Abstract][Full Text] [Related]
4. Evolution of butterfly seasonal plasticity driven by climate change varies across life stages. Nielsen ME; Nylin S; Wiklund C; Gotthard K Ecol Lett; 2023 Sep; 26(9):1548-1558. PubMed ID: 37366181 [TBL] [Abstract][Full Text] [Related]
5. Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Merckx T; Nielsen ME; Heliölä J; Kuussaari M; Pettersson LB; Pöyry J; Tiainen J; Gotthard K; Kivelä SM Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34580222 [TBL] [Abstract][Full Text] [Related]
6. A comparison of photoperiodic control of diapause between aestivation and hibernation in the cabbage butterfly Pieris melete. Xiao HJ; Li F; Wei XT; Xue FS J Insect Physiol; 2008 May; 54(5):755-64. PubMed ID: 18440018 [TBL] [Abstract][Full Text] [Related]
7. Diapause induction and relaxed selection on alternative developmental pathways in a butterfly. Aalberg Haugen IM; Gotthard K J Anim Ecol; 2015 Mar; 84(2):464-72. PubMed ID: 25267557 [TBL] [Abstract][Full Text] [Related]
8. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature. Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758 [TBL] [Abstract][Full Text] [Related]
9. Effects of photoperiod, temperature and aging on adult diapause termination and post-diapause development in female Asian comma butterflies, Polygonia c-aureum Linnaeus (Lepidoptera: Nymphalidae). Hiroyoshi S; Reddy GVP; Mitsuhashi J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Oct; 204(9-10):849-858. PubMed ID: 30251035 [TBL] [Abstract][Full Text] [Related]
10. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests. Peffers CS; Pomeroy LW; Meuti ME J Med Entomol; 2021 Jul; 58(4):1610-1618. PubMed ID: 33835160 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic Variation in Growth and Gene Expression Under Different Photoperiods in Allopatric Populations of the Copepod Schneck DT; Barreto FS Biol Bull; 2020 Apr; 238(2):106-118. PubMed ID: 32412840 [TBL] [Abstract][Full Text] [Related]
12. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.). Bean DW; Dudley TL; Keller JC Environ Entomol; 2007 Feb; 36(1):15-25. PubMed ID: 17349111 [TBL] [Abstract][Full Text] [Related]
13. Compensating for climate change-induced cue-environment mismatches: evidence for contemporary evolution of a photoperiodic reaction norm in Colias butterflies. Nielsen ME; Kingsolver JG Ecol Lett; 2020 Jul; 23(7):1129-1136. PubMed ID: 32333476 [TBL] [Abstract][Full Text] [Related]
14. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. Paolucci S; van de Zande L; Beukeboom LW J Evol Biol; 2013 Apr; 26(4):705-18. PubMed ID: 23496837 [TBL] [Abstract][Full Text] [Related]
15. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466 [TBL] [Abstract][Full Text] [Related]
16. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes. Jones NT; Gilbert B J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065 [TBL] [Abstract][Full Text] [Related]
17. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K Oecologia; 2015 Jan; 177(1):181-90. PubMed ID: 25362581 [TBL] [Abstract][Full Text] [Related]
18. Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics. Kehoe RC; Cruse D; Sanders D; Gaston KJ; van Veen FJF Ecol Evol; 2018 Sep; 8(17):8761-8769. PubMed ID: 30271543 [TBL] [Abstract][Full Text] [Related]
19. Seasonal photoperiods alter developmental time and mass of an invasive mosquito, Aedes albopictus (Diptera: Culicidae), across its north-south range in the United States. Yee DA; Juliano SA; Vamosi SM J Med Entomol; 2012 Jul; 49(4):825-32. PubMed ID: 22897042 [TBL] [Abstract][Full Text] [Related]
20. Rapid evolution of phenology during range expansion with recent climate change. Lustenhouwer N; Wilschut RA; Williams JL; van der Putten WH; Levine JM Glob Chang Biol; 2018 Feb; 24(2):e534-e544. PubMed ID: 29044944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]