These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35965466)
1. Estimation of age-stratified contact rates during the COVID-19 pandemic using a novel inference algorithm. Pooley CM; Doeschl-Wilson AB; Marion G Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210298. PubMed ID: 35965466 [TBL] [Abstract][Full Text] [Related]
2. Estimation of local time-varying reproduction numbers in noisy surveillance data. Li W; Bulekova K; Gregor B; White LF; Kolaczyk ED Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210303. PubMed ID: 35965456 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneity in the onwards transmission risk between local and imported cases affects practical estimates of the time-dependent reproduction number. Creswell R; Augustin D; Bouros I; Farm HJ; Miao S; Ahern A; Robinson M; Lemenuel-Diot A; Gavaghan DJ; Lambert BC; Thompson RN Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210308. PubMed ID: 35965464 [TBL] [Abstract][Full Text] [Related]
4. Refining epidemiological forecasts with simple scoring rules. Moore RE; Rosato C; Maskell S Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210305. PubMed ID: 35965461 [TBL] [Abstract][Full Text] [Related]
5. Technical challenges of modelling real-life epidemics and examples of overcoming these. Panovska-Griffiths J; Waites W; Ackland GJ Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20220179. PubMed ID: 35965472 [TBL] [Abstract][Full Text] [Related]
6. Real-time modelling of a pandemic influenza outbreak. Birrell PJ; Pebody RG; Charlett A; Zhang XS; De Angelis D Health Technol Assess; 2017 Oct; 21(58):1-118. PubMed ID: 29058665 [TBL] [Abstract][Full Text] [Related]
7. A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. Kypraios T; Neal P; Prangle D Math Biosci; 2017 May; 287():42-53. PubMed ID: 27444577 [TBL] [Abstract][Full Text] [Related]
8. Bayesian emulation and history matching of JUNE. Vernon I; Owen J; Aylett-Bullock J; Cuesta-Lazaro C; Frawley J; Quera-Bofarull A; Sedgewick A; Shi D; Truong H; Turner M; Walker J; Caulfield T; Fong K; Krauss F Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20220039. PubMed ID: 35965471 [TBL] [Abstract][Full Text] [Related]
9. A Novel Tool for Real-time Estimation of Epidemiological Parameters of Communicable Diseases Using Contact-Tracing Data: Development and Deployment. Silenou BC; Verset C; Kaburi BB; Leuci O; Ghozzi S; Duboudin C; Krause G JMIR Public Health Surveill; 2022 May; 8(5):e34438. PubMed ID: 35486812 [TBL] [Abstract][Full Text] [Related]
10. Bayesian data assimilation for estimating instantaneous reproduction numbers during epidemics: Applications to COVID-19. Yang X; Wang S; Xing Y; Li L; Xu RYD; Friston KJ; Guo Y PLoS Comput Biol; 2022 Feb; 18(2):e1009807. PubMed ID: 35196320 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the use of social contact data to produce age-specific short-term forecasts of SARS-CoV-2 incidence in England. Munday JD; Abbott S; Meakin S; Funk S PLoS Comput Biol; 2023 Sep; 19(9):e1011453. PubMed ID: 37699018 [TBL] [Abstract][Full Text] [Related]
12. Dynamic calibration with approximate Bayesian computation for a microsimulation of disease spread. Asher M; Lomax N; Morrissey K; Spooner F; Malleson N Sci Rep; 2023 May; 13(1):8637. PubMed ID: 37244962 [TBL] [Abstract][Full Text] [Related]
13. Changes in severity of 2009 pandemic A/H1N1 influenza in England: a Bayesian evidence synthesis. Presanis AM; Pebody RG; Paterson BJ; Tom BD; Birrell PJ; Charlett A; Lipsitch M; De Angelis D BMJ; 2011 Sep; 343():d5408. PubMed ID: 21903689 [TBL] [Abstract][Full Text] [Related]
14. Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models. Whittaker DG; Herrera-Reyes AD; Hendrix M; Owen MR; Band LR; Mirams GR; Bolton KJ; Preston SP J Theor Biol; 2023 Feb; 558():111337. PubMed ID: 36351493 [TBL] [Abstract][Full Text] [Related]
15. Estimating fine age structure and time trends in human contact patterns from coarse contact data: The Bayesian rate consistency model. Dan S; Chen Y; Chen Y; Monod M; Jaeger VK; Bhatt S; Karch A; Ratmann O; PLoS Comput Biol; 2023 Jun; 19(6):e1011191. PubMed ID: 37276210 [TBL] [Abstract][Full Text] [Related]
16. Estimating age-stratified transmission and reproduction numbers during the early exponential phase of an epidemic: A case study with COVID-19 data. Stanke Z; Spouge JL Epidemics; 2023 Sep; 44():100714. PubMed ID: 37595401 [TBL] [Abstract][Full Text] [Related]
17. Estimation of COVID-19 risk-stratified epidemiological parameters and policy implications for Los Angeles County through an integrated risk and stochastic epidemiological model. Horn AL; Jiang L; Washburn F; Hvitfeldt E; de la Haye K; Nicholas W; Simon P; Pentz M; Cozen W; Sood N; Conti DV medRxiv; 2020 Dec; ():. PubMed ID: 33367291 [TBL] [Abstract][Full Text] [Related]
18. Inferring the spread of COVID-19: the role of time-varying reporting rate in epidemiological modelling. Spannaus A; Papamarkou T; Erwin S; Christian JB Sci Rep; 2022 Jun; 12(1):10761. PubMed ID: 35750796 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian nonparametric method for detecting rapid changes in disease transmission. Creswell R; Robinson M; Gavaghan D; Parag KV; Lei CL; Lambert B J Theor Biol; 2023 Feb; 558():111351. PubMed ID: 36379231 [TBL] [Abstract][Full Text] [Related]
20. Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States. Mallela A; Neumann J; Miller EF; Chen Y; Posner RG; Lin YT; Hlavacek WS Viruses; 2022 Jan; 14(1):. PubMed ID: 35062361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]