These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35965466)

  • 21. Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States.
    Mallela A; Neumann J; Miller EF; Chen Y; Posner RG; Lin YT; Hlavacek WS
    Viruses; 2022 Jan; 14(1):. PubMed ID: 35062361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Usage of Compartmental Models in Predicting COVID-19 Outbreaks.
    Zhang P; Feng K; Gong Y; Lee J; Lomonaco S; Zhao L
    AAPS J; 2022 Sep; 24(5):98. PubMed ID: 36056223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
    Taghizadeh L; Karimi A; Heitzinger C
    Comput Biol Med; 2020 Oct; 125():104011. PubMed ID: 33091766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Evaluation of Non-Pharmaceutical Interventions for Reducing Contact Rate in COVID-19 Pandemic: R0 Estimation and Modeling for Istanbul].
    Maral I; Yaylalı E; Güçlü H; İkiışık H; Güner AE
    Mikrobiyol Bul; 2021 Jul; 55(3):389-405. PubMed ID: 34416804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatially-heterogeneous embedded stochastic SEIR models for the 2014-2016 Ebola outbreak in West Africa.
    Martinez K; Brown G; Pankavich S
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100505. PubMed ID: 35691641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An approximate Bayesian computation approach to parameter estimation in a stochastic stage-structured population model.
    Scranton K; Knape J; de Valpine P
    Ecology; 2014 May; 95(5):1418-28. PubMed ID: 25000772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approximate Bayesian Computation for infectious disease modelling.
    Minter A; Retkute R
    Epidemics; 2019 Dec; 29():100368. PubMed ID: 31563466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone.
    Frasso G; Lambert P
    Biostatistics; 2016 Oct; 17(4):779-92. PubMed ID: 27324411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of travelling on the COVID-19 infection cases in Germany.
    Schäfer M; Wijaya KP; Rockenfeller R; Götz T
    BMC Infect Dis; 2022 May; 22(1):455. PubMed ID: 35549671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical modeling of COVID-19 in British Columbia: An age-structured model with time-dependent contact rates.
    Iyaniwura SA; Falcão RC; Ringa N; Adu PA; Spencer M; Taylor M; Colijn C; Coombs D; Janjua NZ; Irvine MA; Otterstatter M
    Epidemics; 2022 Jun; 39():100559. PubMed ID: 35447505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Estimated Effectiveness of Case-Based and Population-Based Interventions on COVID-19 Containment in Taiwan.
    Ng TC; Cheng HY; Chang HH; Liu CC; Yang CC; Jian SW; Liu DP; Cohen T; Lin HH
    JAMA Intern Med; 2021 Jul; 181(7):913-921. PubMed ID: 33821922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time estimation and forecasting of COVID-19 cases and hospitalizations in Wisconsin HERC regions for public health decision making processes.
    Aravamuthan S; Mandujano Reyes JF; Yandell BS; Döpfer D
    BMC Public Health; 2023 Feb; 23(1):359. PubMed ID: 36803324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic.
    Dutta R; Gomes SN; Kalise D; Pacchiardi L
    PLoS Comput Biol; 2021 Aug; 17(8):e1009236. PubMed ID: 34383756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variational Phylodynamic Inference Using Pandemic-scale Data.
    Ki C; Terhorst J
    Mol Biol Evol; 2022 Aug; 39(8):. PubMed ID: 35816422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using mechanistic model-based inference to understand and project epidemic dynamics with time-varying contact and vaccination rates.
    Plank MJ; Hendy SC; Binny RN; Vattiato G; Lustig A; Maclaren OJ
    Sci Rep; 2022 Nov; 12(1):20451. PubMed ID: 36443439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases.
    Chong KC; Zee BCY; Wang MH
    Travel Med Infect Dis; 2018; 23():80-86. PubMed ID: 29653203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Hybrid Epidemic Model to Explore Stochasticity in COVID-19 Dynamics.
    Hwang KKL; Edholm CJ; Saucedo O; Allen LJS; Shakiba N
    Bull Math Biol; 2022 Jul; 84(9):91. PubMed ID: 35859080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model.
    Watson GL; Xiong D; Zhang L; Zoller JA; Shamshoian J; Sundin P; Bufford T; Rimoin AW; Suchard MA; Ramirez CM
    PLoS Comput Biol; 2021 Mar; 17(3):e1008837. PubMed ID: 33780443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The basic reproduction number of COVID-19 across Africa.
    Iyaniwura SA; Rabiu M; David JF; Kong JD
    PLoS One; 2022; 17(2):e0264455. PubMed ID: 35213645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data.
    Gressani O; Faes C; Hens N
    Biom J; 2023 Aug; 65(6):e2200024. PubMed ID: 36639234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.