BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35965743)

  • 1. Improving Proton Dose Calculation Accuracy by Using Deep Learning.
    Wu C; Nguyen D; Xing Y; Montero AB; Schuemann J; Shang H; Pu Y; Jiang S
    Mach Learn Sci Technol; 2021 Mar; 2(1):. PubMed ID: 35965743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance.
    Ali I; Ahmad S
    Med Dosim; 2013; 38(3):255-61. PubMed ID: 23558145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy.
    Pastor-Serrano O; Perkó Z
    Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447605
    [No Abstract]   [Full Text] [Related]  

  • 4. Validation and application of a fast Monte Carlo algorithm for assessing the clinical impact of approximations in analytical dose calculations for pencil beam scanning proton therapy.
    Huang S; Souris K; Li S; Kang M; Barragan Montero AM; Janssens G; Lin A; Garver E; Ainsley C; Taylor P; Xiao Y; Lin L
    Med Phys; 2018 Dec; 45(12):5631-5642. PubMed ID: 30295950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting radiotherapy dose calculation accuracy with deep learning.
    Xing Y; Zhang Y; Nguyen D; Lin MH; Lu W; Jiang S
    J Appl Clin Med Phys; 2020 Aug; 21(8):149-159. PubMed ID: 32559018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Proton Beam Dosimetry Part I: review and performance evaluation of dose calculation algorithms.
    Saini J; Traneus E; Maes D; Regmi R; Bowen SR; Bloch C; Wong T
    Transl Lung Cancer Res; 2018 Apr; 7(2):171-179. PubMed ID: 29876316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a hybrid Monte Carlo-Pencil Beam dose algorithm for proton therapy inverse planning.
    Barragán Montero AM; Souris K; Sanchez-Parcerisa D; Sterpin E; Lee JA
    Med Phys; 2018 Feb; 45(2):846-862. PubMed ID: 29159915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced proton beam dosimetry part II: Monte Carlo
    Maes D; Saini J; Zeng J; Rengan R; Wong T; Bowen SR
    Transl Lung Cancer Res; 2018 Apr; 7(2):114-121. PubMed ID: 29876310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SU-E-T-495: Monte Carlo Dose Verification of Passive Scattering Proton Therapy for Prostate Cancer.
    Giantsoudi D; Paganetti H
    Med Phys; 2012 Jun; 39(6Part17):3819. PubMed ID: 28517455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitioning from measurement-based to combined patient-specific quality assurance for intensity-modulated proton therapy.
    Chen M; Yepes P; Hojo Y; Poenisch F; Li Y; Chen J; Xu C; He X; Gunn GB; Frank SJ; Sahoo N; Li H; Zhu XR; Zhang X
    Br J Radiol; 2020 Mar; 93(1107):20190669. PubMed ID: 31799859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm.
    Widesott L; Lorentini S; Fracchiolla F; Farace P; Schwarz M
    Phys Med Biol; 2018 Jul; 63(14):145016. PubMed ID: 29726402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiobiological and dosimetric impact of RayStation pencil beam and Monte Carlo algorithms on intensity-modulated proton therapy breast cancer plans.
    Rana S; Greco K; Samuel EJJ; Bennouna J
    J Appl Clin Med Phys; 2019 Aug; 20(8):36-46. PubMed ID: 31343826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetric comparison of iPlan
    Menon SV; Paramu R; Bhasi S; Gopalakrishnan Z; Bhaskaran S; Nair RK
    Med Dosim; 2020 Autumn; 45(3):225-234. PubMed ID: 32001069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net.
    Javaid U; Souris K; Dasnoy D; Huang S; Lee JA
    Med Phys; 2019 Dec; 46(12):5790-5798. PubMed ID: 31600829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields.
    Kueng R; Guyer G; Volken W; Frei D; Stabel F; Stampanoni MFM; Manser P; Fix MK
    Med Phys; 2020 Dec; 47(12):6519-6530. PubMed ID: 33075168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pencil beam algorithm for magnetic resonance image-guided proton therapy.
    Padilla-Cabal F; Georg D; Fuchs H
    Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung.
    Magro G; Mein S; Kopp B; Mastella E; Pella A; Ciocca M; Mairani A
    Phys Med; 2021 Jun; 86():66-74. PubMed ID: 34058719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SU-E-T-541: Dose Calculation Algorithm for External Neutron Radiotherapy Based on Pencil Beam Method.
    Moiseev A; Klimanov V
    Med Phys; 2012 Jun; 39(6Part18):3830. PubMed ID: 28518510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An algorithm to assess the need for clinical Monte Carlo dose calculation for small proton therapy fields based on quantification of tissue heterogeneity.
    Bueno M; Paganetti H; Duch MA; Schuemann J
    Med Phys; 2013 Aug; 40(8):081704. PubMed ID: 23927301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.