These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 35966694)

  • 1. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts.
    Ribeiro RA; Bourbon-Melo N; Sá-Correia I
    Front Microbiol; 2022; 13():953479. PubMed ID: 35966694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges.
    Martins LC; Monteiro CC; Semedo PM; Sá-Correia I
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6527-6547. PubMed ID: 32474799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues.
    Mota MN; Múgica P; Sá-Correia I
    J Fungi (Basel); 2022 Jun; 8(7):. PubMed ID: 35887443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy.
    Asemoloye MD; Bello TS; Oladoye PO; Remilekun Gbadamosi M; Babarinde SO; Ebenezer Adebami G; Olowe OM; Temporiti MEE; Wanek W; Marchisio MA
    Bioengineered; 2023 Dec; 14(1):2269328. PubMed ID: 37850721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.
    Mukherjee V; Radecka D; Aerts G; Verstrepen KJ; Lievens B; Thevelein JM
    Biotechnol Biofuels; 2017; 10():216. PubMed ID: 28924451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Response and Tolerance to Acetic Acid in
    Palma M; Guerreiro JF; Sá-Correia I
    Front Microbiol; 2018; 9():274. PubMed ID: 29515554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dung beetle-associated yeasts display multiple stress tolerance: a desirable trait of potential industrial strains.
    Nwaefuna AE; Garcia-Aloy M; Loeto D; Ncube T; Gombert AK; Boekhout T; Alwasel S; Zhou N
    BMC Microbiol; 2023 Oct; 23(1):309. PubMed ID: 37884896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.
    Caspeta L; Nielsen J
    mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications.
    Segal-Kischinevzky C; Romero-Aguilar L; Alcaraz LD; López-Ortiz G; Martínez-Castillo B; Torres-Ramírez N; Sandoval G; González J
    Microorganisms; 2022 Apr; 10(4):. PubMed ID: 35456844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cowpea NAC Transcription Factors Positively Regulate Cellular Stress Response and Balance Energy Metabolism in Yeast
    Srivastava R; Sahoo L
    ACS Synth Biol; 2021 Sep; 10(9):2286-2307. PubMed ID: 34470212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering tolerance to industrially relevant stress factors in yeast cell factories.
    Deparis Q; Claes A; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28586408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae.
    Udom N; Chansongkrow P; Charoensawan V; Auesukaree C
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31101611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium and Sodium Salt Stress Characterization in the Yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and
    Illarionov A; Lahtvee PJ; Kumar R
    Appl Environ Microbiol; 2021 Jun; 87(13):e0310020. PubMed ID: 33893111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.
    Johnson EA
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):503-17. PubMed ID: 23184219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.
    Favaro L; Basaglia M; Trento A; Van Rensburg E; García-Aparicio M; Van Zyl WH; Casella S
    Biotechnol Biofuels; 2013 Nov; 6(1):168. PubMed ID: 24286305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating stress in industrial yeasts.
    Walker GM; Basso TO
    Fungal Biol; 2020 May; 124(5):387-397. PubMed ID: 32389301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates.
    Cámara E; Olsson L; Zrimec J; Zelezniak A; Geijer C; Nygård Y
    Biotechnol Adv; 2022; 57():107947. PubMed ID: 35314324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.