These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35966702)
1. An C; Ma S; Liu C; Ding H; Xue W Front Microbiol; 2022; 13():906724. PubMed ID: 35966702 [TBL] [Abstract][Full Text] [Related]
2. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Simonetti E; Roberts IN; Montecchia MS; Gutierrez-Boem FH; Gomez FM; Ruiz JA Microbiol Res; 2018 Jan; 206():50-59. PubMed ID: 29146260 [TBL] [Abstract][Full Text] [Related]
3. Antifungal Activity and Plant Growth-Promoting Properties of Yi Y; Luan P; Wang K; Li G; Yin Y; Yang Y; Zhang Q; Liu Y Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014099 [No Abstract] [Full Text] [Related]
4. The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. Xu YB; Chen M; Zhang Y; Wang M; Wang Y; Huang QB; Wang X; Wang G FEMS Microbiol Lett; 2014 May; 354(2):142-52. PubMed ID: 24750250 [TBL] [Abstract][Full Text] [Related]
5. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease. Wei X; Shen F; Hong Y; Rong W; Du L; Liu X; Xu H; Ma L; Zhang Z Mol Plant Pathol; 2016 Oct; 17(8):1252-64. PubMed ID: 26720854 [TBL] [Abstract][Full Text] [Related]
6. Identification of a Novel Zhu HX; Hu LF; Hu HY; Zhou F; Wu LL; Wang SW; Rozhkova T; Li CW Plant Dis; 2023 Apr; 107(4):1139-1150. PubMed ID: 36190299 [TBL] [Abstract][Full Text] [Related]
7. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. Chen X; Liu J; Chen AJ; Wang L; Jiang X; Gong A; Liu W; Wu H Pest Manag Sci; 2024 Aug; 80(8):4125-4136. PubMed ID: 38578571 [TBL] [Abstract][Full Text] [Related]
8. Development of a Rapid Approach for Detecting Sharp Eyespot Resistance in Seedling-Stage Wheat and Its Application in Chinese Wheat Cultivars. Ren Y; Yu PB; Wang Y; Hou WX; Yang X; Fan JL; Wu XH; Lv XL; Zhang N; Zhao L; Dong ZD; Chen F Plant Dis; 2020 Jun; 104(6):1662-1667. PubMed ID: 32324096 [TBL] [Abstract][Full Text] [Related]
9. Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis. Zhang Q; Liu Y; Harvey PR; Stummer BE; Yang J; Ji Z J Appl Microbiol; 2023 May; 134(5):. PubMed ID: 37188640 [TBL] [Abstract][Full Text] [Related]
10. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Wang M; Zhu X; Wang K; Lu C; Luo M; Shan T; Zhang Z Sci Rep; 2018 Apr; 8(1):6543. PubMed ID: 29695751 [TBL] [Abstract][Full Text] [Related]
11. Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: Deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). Al-Shwaiman HA; Shahid M; Elgorban AM; Siddique KHM; Syed A Chemosphere; 2022 May; 295():133843. PubMed ID: 35122822 [TBL] [Abstract][Full Text] [Related]
12. Use of resistant Rhizoctonia cerealis strains to control wheat sharp eyespot using organically developed pig manure fertilizer. Xu Y; Li X; Cong C; Gong G; Xu Y; Che J; Hou F; Chen H; Wang L Sci Total Environ; 2020 Jul; 726():138568. PubMed ID: 32305767 [TBL] [Abstract][Full Text] [Related]
13. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Chen J; Li GH; Du ZY; Quan W; Zhang HY; Che MZ; Wang Z; Zhang ZJ Theor Appl Genet; 2013 Nov; 126(11):2865-78. PubMed ID: 23989648 [TBL] [Abstract][Full Text] [Related]
14. A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease. Rong W; Luo M; Shan T; Wei X; Du L; Xu H; Zhang Z Front Plant Sci; 2016; 7():1723. PubMed ID: 27899932 [TBL] [Abstract][Full Text] [Related]
15. The Pathogen-Induced MATE Gene Su Q; Rong W; Zhang Z Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328796 [TBL] [Abstract][Full Text] [Related]
16. Decoding the Plant Growth Promotion and Antagonistic Potential of Bacterial Endophytes From Gupta S; Pandey S; Sharma S Front Plant Sci; 2022; 13():813686. PubMed ID: 35237287 [TBL] [Abstract][Full Text] [Related]
17. Effect of Li L; Guo N; Feng Y; Duan M; Li C Front Plant Sci; 2022; 13():836940. PubMed ID: 35498704 [TBL] [Abstract][Full Text] [Related]
18. Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. Zaman NR; Chowdhury UF; Reza RN; Chowdhury FT; Sarker M; Hossain MM; Akbor MA; Amin A; Islam MR; Khan H PLoS One; 2021; 16(9):e0257863. PubMed ID: 34591915 [TBL] [Abstract][Full Text] [Related]
19. Biological Control of Take-All and Growth Promotion in Wheat by Xu W; Xu L; Deng X; Goodwin PH; Xia M; Zhang J; Wang Q; Sun R; Pan Y; Wu C; Yang L Pathogens; 2021 Jul; 10(7):. PubMed ID: 34358053 [TBL] [Abstract][Full Text] [Related]