These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35966996)

  • 21. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant.
    Pulferer HS; Ásgeirsdóttir B; Mondini V; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35443233
    [No Abstract]   [Full Text] [Related]  

  • 23. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features.
    Hosseini SM; Shalchyan V
    Front Hum Neurosci; 2022; 16():901285. PubMed ID: 35845243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts.
    Kim HH; Jeong J
    Comput Biol Med; 2019 Jul; 110():254-264. PubMed ID: 31233971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EEG-based BCI for the linear control of an upper-limb neuroprosthesis.
    Vidaurre C; Klauer C; Schauer T; Ramos-Murguialday A; Müller KR
    Med Eng Phys; 2016 Nov; 38(11):1195-1204. PubMed ID: 27425203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Band decomposition of asynchronous electroencephalogram signal for upper limb movement classification.
    Kulkarni V; Joshi Y; Manthalkar R; Elamvazuthi I
    Phys Eng Sci Med; 2022 Jun; 45(2):643-656. PubMed ID: 35635610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface.
    Mattioli F; Porcaro C; Baldassarre G
    J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34920443
    [No Abstract]   [Full Text] [Related]  

  • 32. Electroencephalogram-Based Brain-Computer Interface and Lower-Limb Prosthesis Control: A Case Study.
    Murphy DP; Bai O; Gorgey AS; Fox J; Lovegreen WT; Burkhardt BW; Atri R; Marquez JS; Li Q; Fei DY
    Front Neurol; 2017; 8():696. PubMed ID: 29326653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding.
    Nakagome S; Luu TP; He Y; Ravindran AS; Contreras-Vidal JL
    Sci Rep; 2020 Mar; 10(1):4372. PubMed ID: 32152333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings.
    Li G; Jiang S; Meng J; Chai G; Wu Z; Fan Z; Hu J; Sheng X; Zhang D; Chen L; Zhu X
    Neuroimage; 2022 Apr; 250():118969. PubMed ID: 35124225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance.
    Kang JH; Youn J; Kim SH; Kim J
    Front Neurosci; 2021; 15():663101. PubMed ID: 34483816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network.
    Lee DY; Jeong JH; Lee BH; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():226-237. PubMed ID: 35041605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy.
    Leamy DJ; Kocijan J; Domijan K; Duffin J; Roche RA; Commins S; Collins R; Ward TE
    J Neuroeng Rehabil; 2014 Jan; 11():9. PubMed ID: 24468185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of using discrete Brain Computer Interface for people with Multiple Sclerosis.
    Shiels TA; Oxley TJ; Fitzgerald PB; Opie NL; Wong YT; Grayden DB; John SE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5686-5689. PubMed ID: 34892412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression.
    Chu Y; Zhao X; Zou Y; Xu W; Song G; Han J; Zhao Y
    J Neural Eng; 2020 Aug; 17(4):046029. PubMed ID: 32780720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces.
    Wang K; Xu M; Wang Y; Zhang S; Chen L; Ming D
    J Neural Eng; 2020 Jan; 17(1):016033. PubMed ID: 31747642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.