These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35966996)

  • 41. Assessing movement factors in upper limb kinematics decoding from EEG signals.
    Úbeda A; Hortal E; Iáñez E; Perez-Vidal C; Azorín JM
    PLoS One; 2015; 10(5):e0128456. PubMed ID: 26020525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance.
    Meng J; Edelman BJ; Olsoe J; Jacobs G; Zhang S; Beyko A; He B
    Front Neurosci; 2018; 12():227. PubMed ID: 29681792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations.
    Luu TP; He Y; Brown S; Nakagome S; Contreras-Vidal JL
    Int Conf Virtual Rehabil; 2015 Jun; 2015():30-37. PubMed ID: 27713915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical Decoding Model of Upper Limb Movement Intention From EEG Signals Based on Attention State Estimation.
    Bi L; Xia S; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2008-2016. PubMed ID: 34559657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control.
    Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural decoding of unilateral upper limb movements using single trial MEG signals.
    Sugata H; Goto T; Hirata M; Yanagisawa T; Shayne M; Matsushita K; Yoshimine T; Yorifuji S
    Brain Res; 2012 Aug; 1468():29-37. PubMed ID: 22683716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EEG-based BCI system for decoding finger movements within the same hand.
    Alazrai R; Alwanni H; Daoud MI
    Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Classifying three imaginary states of the same upper extremity using time-domain features.
    Tavakolan M; Frehlick Z; Yong X; Menon C
    PLoS One; 2017; 12(3):e0174161. PubMed ID: 28358916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decoding covert speech for intuitive control of brain-computer interfaces based on single-trial EEG: a feasibility study.
    Tottrup L; Leerskov K; Hadsund JT; Kamavuako EN; Kaseler RL; Jochumsen M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():689-693. PubMed ID: 31374711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motor imagery classification of upper limb movements based on spectral domain features of EEG patterns.
    Samuel OW; Xiangxin Li ; Yanjuan Geng ; Pang Feng ; Shixiong Chen ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2976-2979. PubMed ID: 29060523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decoding auditory attention from EEG using a convolutional neural network
    An WW; Pei A; Noyce AL; Shinn-Cunningham B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6586-6589. PubMed ID: 34892618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D hand motion trajectory prediction from EEG mu and beta bandpower.
    Korik A; Sosnik R; Siddique N; Coyle D
    Prog Brain Res; 2016; 228():71-105. PubMed ID: 27590966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees.
    Idowu OP; Ilesanmi AE; Li X; Samuel OW; Fang P; Li G
    Comput Methods Programs Biomed; 2021 Jul; 206():106121. PubMed ID: 33957375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Paradigm Design of a Novel 2-class Unilateral Upper Limb Motor Imagery Tasks and its EEG Signal Classification.
    Qiu W; Yang B; Ma J; Gao S; Zhu Y; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():152-155. PubMed ID: 34891260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training.
    Abu-Rmileh A; Zakkay E; Shmuelof L; Shriki O
    Front Hum Neurosci; 2019; 13():362. PubMed ID: 31680914
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Lower-Limb Motor Tasks via Brain-Computer Interfaces: A Topical Overview.
    Asanza V; Peláez E; Loayza F; Lorente-Leyva LL; Peluffo-Ordóñez DH
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.