BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35967060)

  • 1. Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents.
    Numan A; Singh PS; Alam A; Khalid M; Li L; Singh S
    ACS Omega; 2022 Aug; 7(31):27079-27089. PubMed ID: 35967060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.
    Dennison GH; Johnston MR
    Chemistry; 2015 Apr; 21(17):6328-38. PubMed ID: 25649522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation.
    Kumar V
    Chem Commun (Camb); 2021 Apr; 57(28):3430-3444. PubMed ID: 33725077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century.
    Kumar V; Kim H; Pandey B; James TD; Yoon J; Anslyn EV
    Chem Soc Rev; 2023 Jan; 52(2):663-704. PubMed ID: 36546880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent probes for the detection of chemical warfare agents.
    Meng WQ; Sedgwick AC; Kwon N; Sun M; Xiao K; He XP; Anslyn EV; James TD; Yoon J
    Chem Soc Rev; 2023 Jan; 52(2):601-662. PubMed ID: 36149439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples.
    Golime R; Chandra B; Palit M; Dubey DK
    Arch Toxicol; 2019 Jun; 93(6):1473-1484. PubMed ID: 30923868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular recognition platform for the simultaneous sensing of diverse chemical weapons.
    Zeng L; Chen T; Zhu B; Koo S; Tang Y; Lin W; James TD; Kim JS
    Chem Sci; 2022 Apr; 13(16):4523-4532. PubMed ID: 35656136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential sensing of toxic chemical warfare agents (CWAs) by twisted nanographenes: A first principle approach.
    Sattar N; Sajid H; Tabassum S; Ayub K; Mahmood T; Gilani MA
    Sci Total Environ; 2022 Jun; 824():153858. PubMed ID: 35176369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics.
    Lee MY; Lee HR; Park CH; Han SG; Oh JH
    Acc Chem Res; 2018 Nov; 51(11):2829-2838. PubMed ID: 30403337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides.
    Gori M; Thakur A; Sharma A; Flora SJS
    Top Curr Chem (Cham); 2021 Aug; 379(5):33. PubMed ID: 34346011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Frameworks against Toxic Chemicals.
    Islamoglu T; Chen Z; Wasson MC; Buru CT; Kirlikovali KO; Afrin U; Mian MR; Farha OK
    Chem Rev; 2020 Aug; 120(16):8130-8160. PubMed ID: 32207607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Site Detection as a Countermeasure to Chemical Warfare/Terrorism.
    Seto Y
    Forensic Sci Rev; 2014 Jan; 26(1):23-51. PubMed ID: 26226969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water.
    Dubey DK; Pardasani D; Gupta AK; Palit M; Kanaujia PK; Tak V
    J Chromatogr A; 2006 Feb; 1107(1-2):29-35. PubMed ID: 16427062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triazine-Based Covalent Organic Framework: A Promising Sorbent for Efficient Elimination of the Hydrocarbon Backgrounds of Organic Sample for GC-MS and
    Sinha Roy K; Goud D R; Mazumder A; Chandra B; Purohit AK; Palit M; Dubey DK
    ACS Appl Mater Interfaces; 2019 May; 11(17):16027-16039. PubMed ID: 30964249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles.
    Deng W; Goldys EM
    Analyst; 2014 Nov; 139(21):5321-34. PubMed ID: 25170528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of degradation products of chemical warfare agents using capillary electrophoresis.
    Aleksenko SS; Gareil P; Timerbaev AR
    Analyst; 2011 Oct; 136(20):4103-18. PubMed ID: 21858300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconductor Gas Sensors for Detecting Chemical Warfare Agents and Their Simulants.
    Witkiewicz Z; Jasek K; Grabka M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents.
    Grissom TG; Plonka AM; Sharp CH; Ebrahim AM; Tian Y; Collins-Wildman DL; Kaledin AL; Siegal HJ; Troya D; Hill CL; Frenkel AI; Musaev DG; Gordon WO; Karwacki CJ; Mitchell MB; Morris JR
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14641-14661. PubMed ID: 31994872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.
    Chen L; Wu D; Yoon J
    ACS Sens; 2018 Jan; 3(1):27-43. PubMed ID: 29231710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.