These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35967060)

  • 21. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.
    Chen L; Wu D; Yoon J
    ACS Sens; 2018 Jan; 3(1):27-43. PubMed ID: 29231710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction of chemical warfare agents from water with hydrophilic-lipophilic balance and C18 cartridges: comparative study.
    Kanaujia PK; Pardasani D; Gupta AK; Dubey DK
    J Chromatogr A; 2007 Jan; 1139(2):185-90. PubMed ID: 17126344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensing Nitrogen Mustard Gas Simulant at the ppb Scale via Selective Dual-Site Activation at Au/Mn
    Bigiani L; Zappa D; Barreca D; Gasparotto A; Sada C; Tabacchi G; Fois E; Comini E; Maccato C
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23692-23700. PubMed ID: 31252461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Chemical warfare agent poisoning].
    Wille T; Steinritz D; Worek F; Thiermann H
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2019 Nov; 62(11):1370-1377. PubMed ID: 31602511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescent sensors for the detection of chemical warfare agents.
    Burnworth M; Rowan SJ; Weder C
    Chemistry; 2007; 13(28):7828-36. PubMed ID: 17705326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles.
    Yang SZ; Liu QA; Liu YL; Weng GJ; Zhu J; Li JJ
    Mikrochim Acta; 2021 Jul; 188(8):258. PubMed ID: 34268648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
    Tak V; Purohit A; Pardasani D; Goud DR; Jain R; Dubey DK
    J Chromatogr A; 2014 Nov; 1370():80-92. PubMed ID: 25454132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trace level detection and identification of chemicals related to the chemical weapons convention from complex organic samples.
    Reddy TJ; Saradhil UV; Prabhakar S; Vairamani M
    J Chromatogr A; 2004 Jun; 1038(1-2):225-30. PubMed ID: 15233537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical warfare agent detection: a review of current trends and future perspective.
    Pacsial-Ong EJ; Aguilar ZP
    Front Biosci (Schol Ed); 2013 Jan; 5(2):516-43. PubMed ID: 23277066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.
    Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC
    Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of macroscopic monolithic metal-organic gels for ultra-fast destruction of chemical warfare agents.
    Zhou C; Zhang S; Pan H; Yang G; Wang L; Tao CA; Li H
    RSC Adv; 2021 Jun; 11(36):22125-22130. PubMed ID: 35480835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Analytical and on-site detection methods for chemical warfare agents].
    Seto Y
    Yakugaku Zasshi; 2006 Dec; 126(12):1279-99. PubMed ID: 17139154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic Wave Sensors for Detection of Blister Chemical Warfare Agents and Their Simulants.
    Grabka M; Witkiewicz Z; Jasek K; Piwowarski K
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular Sensing of Chemical Warfare Agents.
    Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G
    Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.
    Singh V; Purohit AK; Chinthakindi S; Goud RD; Tak V; Pardasani D; Shrivastava AR; Dubey DK
    J Chromatogr A; 2016 May; 1448():32-41. PubMed ID: 27113675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using cheminformatics to find simulants for chemical warfare agents.
    Lavoie J; Srinivasan S; Nagarajan R
    J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular design and architectonics towards film-based fluorescent sensing.
    Huang R; Liu T; Peng H; Liu J; Liu X; Ding L; Fang Y
    Chem Soc Rev; 2024 Jul; 53(13):6960-6991. PubMed ID: 38836431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining Diffusion Coefficients of Chemical Warfare Agents in Metal-Organic Frameworks.
    Agrawal M; Boulfelfel SE; Sava Gallis DF; Greathouse JA; Sholl DS
    J Phys Chem Lett; 2019 Dec; 10(24):7823-7830. PubMed ID: 31750662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs.
    Zhao J; Lee DT; Yaga RW; Hall MG; Barton HF; Woodward IR; Oldham CJ; Walls HJ; Peterson GW; Parsons GN
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13224-13228. PubMed ID: 27653957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.