These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35967903)

  • 21. Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel.
    Akyildiz FT; Alshammari FS
    Adv Differ Equ; 2021; 2021(1):319. PubMed ID: 34249124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fractional order SIR epidemic model with Beddington-De Angelis incidence and Holling type II treatment rate for COVID-19.
    Swati ; Nilam
    J Appl Math Comput; 2022; 68(6):3835-3859. PubMed ID: 35013679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability analysis and optimal control of Covid-19 pandemic SEIQR fractional mathematical model with harmonic mean type incidence rate and treatment.
    Sinan M; Ali A; Shah K; Assiri TA; Nofal TA
    Results Phys; 2021 Mar; 22():103873. PubMed ID: 33552882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global stability analysis of an SVEIR epidemic model with general incidence rate.
    Gao DP; Huang NJ; Kang SM; Zhang C
    Bound Value Probl; 2018; 2018(1):42. PubMed ID: 34171003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic.
    Khyar O; Allali K
    Nonlinear Dyn; 2020; 102(1):489-509. PubMed ID: 32921921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global stability of COVID-19 model involving the quarantine strategy and media coverage effects.
    A Mohsen A; Al-Husseiny HF; Zhou X; Hattaf K
    AIMS Public Health; 2020; 7(3):587-605. PubMed ID: 32968680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions.
    Ali Z; Rabiei F; Rashidi MM; Khodadadi T
    Eur Phys J Plus; 2022; 137(3):395. PubMed ID: 35368740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability and numerical analysis via non-standard finite difference scheme of a nonlinear classical and fractional order model.
    Alrabaiah H; Din RU; Ansari KJ; Ur Rehman Irshad A; Ozdemir B
    Results Phys; 2023 Jun; 49():106536. PubMed ID: 37214757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on the Global Stability for a Generalized SEIR Epidemic Model.
    Xue C
    Comput Intell Neurosci; 2022; 2022():8215214. PubMed ID: 35978893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Mathematical Model Analysis for the Transmission Dynamics of Leptospirosis Disease in Human and Rodent Populations.
    Engida HA; Theuri DM; Gathungu D; Gachohi J; Alemneh HT
    Comput Math Methods Med; 2022; 2022():1806585. PubMed ID: 36164616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability analysis of COVID-19 model with fractional-order derivative and a delay in implementing the quarantine strategy.
    Hikal MM; Elsheikh MMA; Zahra WK
    J Appl Math Comput; 2022; 68(1):295-321. PubMed ID: 33776609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the impact of the vaccine on the COVID-19 epidemic transmission via fractional derivative.
    Arshad S; Khalid S; Javed S; Amin N; Nawaz F
    Eur Phys J Plus; 2022; 137(7):802. PubMed ID: 35845824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling disease spread with spatio-temporal fractional derivative equations and saturated incidence rate.
    Bounkaicha C; Allali K
    Model Earth Syst Environ; 2023 Apr; ():1-13. PubMed ID: 37361702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator.
    Liu X; Arfan M; Ur Rahman M; Fatima B
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):98-112. PubMed ID: 35271386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability behavior of a two-susceptibility SHIR epidemic model with time delay in complex networks.
    Guan G; Guo Z
    Nonlinear Dyn; 2021; 106(1):1083-1110. PubMed ID: 34483481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical Approach to Investigate Stress due to Control Measures to Curb COVID-19.
    Paul JN; Mirau SS; Mbalawata IS
    Comput Math Methods Med; 2022; 2022():7772263. PubMed ID: 35069795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel Corona virus disease infection in Tunisia: Mathematical model and the impact of the quarantine strategy.
    Fredj HB; Chérif F
    Chaos Solitons Fractals; 2020 Sep; 138():109969. PubMed ID: 32536761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multiconsistent computational methodology to resolve a diffusive epidemiological system with effects of migration, vaccination and quarantine.
    Herrera-Serrano JE; Guerrero-Díaz-de-León JA; Medina-Ramírez IE; Macías-Díaz JE
    Comput Methods Programs Biomed; 2023 Jun; 236():107526. PubMed ID: 37098304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission.
    Arshad S; Siddique I; Nawaz F; Shaheen A; Khurshid H
    Physica A; 2023 Jan; 609():128383. PubMed ID: 36506918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of a fractional order mathematical model for COVID-19 epidemic.
    Zhang Z; Zeb A; Egbelowo OF; Erturk VS
    Adv Differ Equ; 2020; 2020(1):420. PubMed ID: 32834820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.